基于不同模型的迁移学习垃圾分类
摘要
关键词
全文:
PDF参考
[1] 陈耘. 抓垃圾分类应精准施策[J]. 宁波经济 (财经视点),2019(08):44-45.
[2]Pan S J, Qiang Y. A Survey on Transfer Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359.
[3] Szegedy C, Wei L, Jia Y, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015.
[4] 薛勇, 王立扬, 张瑜, 沈群. 基于GoogLeNet 深度迁移学习的苹果缺陷检测方法[J]. 农业机械学 报,2020,51(07):30-35.
[5] 徐一鸣, 张娟, 刘成成,顾菊平,潘高超.迁 移学习模式下基于GoogLeNet网络的风电机组视觉检测 [J].计算机科学,2019,46(05):260-265.
[6] [1] He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[J]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[7] Howard AG,Zhu M, Chen B,et al.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[J]. 2017.
[8] 陈宇超,卞晓晓.基于机器视觉与深度 学习的医疗垃圾分类系统[J]. 电脑编程技巧与维 护,2019(05):108-110.
[9] Sandler M, Howard A, Zhu M, et al.
MobileNetV2: Inverted Residuals and Linear Bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.
DOI: http://dx.doi.org/10.18686/jsjxt.v3i2.46787
Refbacks
- 当前没有refback。