土壤脱盐对降低地下水中铁浓度的影响
摘要
物质。本研究旨在了解和分析阶式曝气系统和基于粘土的快速砂滤器降低井水中铁浓度的效果。本研究使用实验性
的定量方法。在这项研究中,研究人员使用了前测-后测对照组设计,在南苏拉威西省庞格普县的Sapuli岛和中苏拉
威西省万鸦老市的Sindulang Satu村开展研究。该研究采用了完全随机设计(CRD),得到了6×3=18个处理组合。本
研究以两个研究区域的井水为研究对象,采用简单随机抽样的方法抽取了15份井水样本。该研究通过在10升井水中
加入20克粘土作为脱盐剂,获得的最大平均铁(Fe)水平下降达到了57.27%。在两个研究地点获得的降低没有显著
差异。由于粘土中的高岭土材料,通过添加粘土作为粘合剂,以阶式曝气机和快速砂滤器降低铁(Fe)水平。
关键词
全文:
PDF参考
[1]K. J. Ruskin, S. H. Rosenbaum, and I. J. Rampil,
Fundamentals of neuroanesthesia: a physiologic approach to
clinical practice. Oxford University Press, 2013.
[2]N. C. Moreland, “Fundamentals of Neuroanesthesia:
A Physiologic Approach to Clinical Practice,” J. Am. Soc.
Anesthesiol., vol. 121, no. 4, pp. 908–909, 2014.
[3]WHO/UNICEF Joint Water Supply, Sanitation
Monitoring Programme., Progress on drinking water and
sanitation: 2014 update. World Health Organization, 2014.
[4]Ronny. and A. H. Hasim, “Effectiveness of Multiple
Tray-Aerators in Reducing Iron (Fe) Water Wells in Gowa
Regency, Indonesia,” Ecol. Environ. Conserv., vol. 24, no. 1,
pp. 22–25, 2018.
[5]Ronny, Erlani, and Jasman, “Level of Correlation in
the Depth of Groundwater Wells: Iron and Chloride,” Indian J.
Environ. Prot., vol. 39, no. 8, pp. 746–751, 2019.
[6]Ronny, B. Y. M. Badjuka, Jasman, Rusli, and H. B.
Notobroto, “The Combination of Aeration and Filtration System
in Reducing Water Pollution: An Experimental Study,” Int. J.
Adv. Sci. Eng. Inf. Technol., vol. 10, no. 5, pp. 2103–2110,
2020.
[7]L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot,
and P. Moulin, “Reverse osmosis desalination: water sources,
technology, and today’s challenges,” Water Res., vol. 43, no. 9,
pp. 2317–2348, 2009.
[8]R. J. Petersen, “Composite reverse osmosis and
nanofiltration membranes,” J. Memb. Sci., vol. 83, no. 1, pp.
81–150, 1993.
[9]S. Mustafa, H. Bashir, N. Rehana, and A. Naeem,
“Selectivity reversal and dimerization of chromate in the
exchanger Amberlite IRA-400,” React. Funct. Polym., vol. 34,
no. 2–3, pp. 135–144, 1997.
[10]L. H. Wartelle and W. E. Marshall, “Chromate
ion adsorption by agricultural by-products modified with
dimethyloldihydroxyethylene urea and choline chloride,”
Water Res., vol. 39, no. 13, pp. 2869–2876, 2005.
[11]A. W. Skempton, “The colloidal activity of clays,”
Sel. Pap. soil Mech., pp. 106–118, 1953.
[12]P. F. Kerr, Optical mineralogy. California: McGrawHill, 1959.
[13]K. G. Bhattacharyya and S. Sen Gupta, “Kaolinite
and montmorillonite as adsorbents for Fe (III), Co (II) and Ni (II)
in aqueous medium,” Appl. Clay Sci., vol. 41, no. 1–2, pp.
1–9, 2008, doi: 10.1016/j.clay.2007.09.005.
[14]K. Ellis and W. E. Wood, “Slow sand filtration,” Crit.
Rev. Environ. Sci. Technol., vol. 15, no. 4, pp. 315–354, 1985.
[15]C. A. Prochaska and A. I. Zouboulis, “Performance
of intermittently operated sand filters: a comparable study,
treating wastewaters of different origins,” Water. Air. Soil
Pollut., vol. 147, no. 1–4, pp. 367–388, 2003.
[16]M. L. Weber-Shirk and R. I. Dick, “Physicalchemical mechanisms in slow sand filters,” Am. Water Work.
Assoc. J., vol. 89, no. 1, p. 87, 1997.
[17]Y. K. Singh, Fundamental Research Methodology and
Statistics. New Delhi, India: New Age International (P) Ltd.,
Publishers, 2006.
[18]K. Hinkelmann and O. Kempthorne, Design and
Analysis of Experiments: Introduction to Experimental Design,
Volume 1, 2nd ed. New Jersey: John Wiley & Sons, Inc., 2008.
[19]J. W. Creswell and V. L. P. Clark, Designing and
Conducting Mixed Methods Research, 3rd ed. Beverly Hills,
CA: SAGE Publications, 2018.
[20]V. L. Anderson and R. A. McLean, Design of
experiments: a realistic approach. Routledge, 2018.
[21]A. Dean, D. Voss, and D. Draguljić, Design and
analysis of experiments, vol. 1. Springer, 1999.
[22]D. C. Montgomery, Design, and analysis of
experiments. John wiley & sons, 2017.
[23]Hinton, Perry R., Mcmurray, Isabella., and Brownlow,
Charlotte., SPSS Explained, 2nd ed. New York: Routledge,
2014.
[24]Roscoe, John T., Fundamental Research Statistics for
the Behavioral Sciences, 2nd ed. New York: Holt, Rinehart,
and Winston, 1975.
[25]Diehl, P L. and L. R. Gay, “Research Methods for
Business and Management,” New York McMillan, 1992.
[26]S. Sen Gupta and K. G. Bhattacharyya, “Adsorption
of Ni (II) on clays,” J. Colloid Interface Sci., vol. 295, no. 1, pp.
21–32, 2006.
[27]J. E. Bowles, Physical and Geotechnical Properties of
Soils, 2nd ed. New York, USA: McGraw-Hill, 1979.
[28]M. K. Uddin, “A review on the adsorption of heavy
metals by clay minerals, with special focus on the past
decade,” Chem. Eng. J., vol. 308, pp. 438–462, 2017, doi:
10.1016/j.cej.2016.09.029.
[29]H. O. Buckman and N. C. Brady, The Nature and
Properties of Soils. New York: Mac Millan. Pub. Co. Inc, 1982.
[30]B. R. Moss, Ecology of fresh waters: man and
medium, past to future. John Wiley & Sons, 2009.
[31]C. D. Busch, J. L. Koon, and R. Allison, “Aeration,
water quality, and catfish production,” Trans. ASAE, vol. 17,
no. 3, pp. 433–435, 1974.
[32]F. C. Roe, “Aeration of Water by Air Diffusion,” J.
Am. Water Works Assoc., vol. 27, no. 7, pp. 897–904, 1935.
[33]H. Chanson and L. Toombes, Flow aeration at stepped
cascades, no. Research Report No. CE155. 1997.
[34]J. Zhu, C. F. Miller, C. Dong, X. Wu, L. Wang, and
S. Mukhtar, “Aerator module development using venturi air
injectors to improve aeration efficiency,” Appl. Eng. Agric.,
vol. 23, no. 5, pp. 661–667, 2007.
[35]T. J. Seelaus, D. W. Hendricks, and B. A.
Janonis, “Design and operation of a slow sand filter,”
Journal‐American Water Work. Assoc., vol. 78, no. 12, pp.
35–41, 1986.
[36]Y. J. Dullemont, J. F. Schijven, W. A. M. Hijnen, M.
Colin, A. Magic-Knezev, and W. A. Oorthuizen, “Removal of
microorganisms by slow sand filtration,” Recent Prog. Slow
Sand Altern. Biofiltration Process., vol. 1, pp. 12–20, 2006.
[37]H. E. Hudson, “Functional design of rapid sand
filters,” J. Sanit. Eng. Div., vol. 89, no. 1, pp. 17–28, 1963.
[38]A. Hounslow, Water quality data: analysis and
interpretation. CRC press, 2018.
[39]D. Z. Haman and A. B. Bottcher, Home water quality
and safety. Citeseer, 1986.
DOI: http://dx.doi.org/10.12361/2661-3549-04-08-105368
Refbacks
- 当前没有refback。