风荷载分布模式下高层建筑动力响应的比较研究
摘要
风影响的脆弱性也会增加。规范和标准使用“阵风荷载系数”(GLF)方法来估计 0、45 和 90 度对高层结构的动态影响。在
风荷载的实际情况下,这些条件不适用于强风响应。为了获得其他倾斜风向的响应,假设各种类型的荷载模式施加风荷载。
对于强风下结构的动力响应分析,使用频域的谱响应方法或时域运动方程的逐步积分。本文旨在就高层建筑动态风荷载的阵
风响应系数(GRF),对顺风和横风响应中的各种斜风和正交风荷载模式进行比较。在这项研究中,对仰光地区和沿海地区的
强风模型进行了分析。然后,对强风作用下的最大结构响应进行了比较。
关键词
全文:
PDF参考
[1] John D. Holmes. 2001. Wind Loading of Structures. Spon Press, London. [2] Y.Tamura, A. Kareem. 2013. Advanced Structural Wind
Engineering. Springer Press, New York. [3] ASCE 7-05. 1995, 1998, 2002, 2005, 2010. Minimum
Design Loads for Buildings and Other Structures. American
Society of Civil Engineers. [4] H. Shirato. 2014. Special Lectures for Wind and
EarthquakeEngineering Department of Civil and Earth
Resources Engineering, Kyoto University. [5] Davenport, A. G. 1961. “The Application of Statistical
Concepts to the Windloading of structures”, Proceedings of
Institution of Civil Engineers, London. [6] Taranath, B. S. 2011. Structural Analysis and Design of
Tall BuildingsSteel and Composite Construction. CRC Press. [7] Bungale S.Taranath. 2005. Wind and Earthquake Resistant Buildings. Marcel Dekker Publication, New York, U.S.A. [8] ASCE 7-10-Commentary. 2010. Minimum Design Loads
for Buildings and Other Structures. American Society of Civil
Engineers. [9] Nikhil Agrawal, V. K. Gupta, Amit Gupta, Achal Mittal. 2012, “Comparison of Codal Values and Experimental Data Pertaining to Dynamic Wind Characteristics”. Journal of Wind
Engineering, Vol. 9, No. 1, January. [10] Stathopoulos, T., Elsharawy, M., and Galal, K. 2013. “Wind load combinations including torsion for rectangular mediumrise buildings”. International Journal of High-Rise Buildings, 2(3), 1-11. [11] AIJ-RLB. 2004. Recommendations on Loads for Buildings. Architectural Institute of Japan. [12] NBCC 2010. National Building Code of Canada. National Research Council Canada, Ottawa.
DOI: http://dx.doi.org/10.12361/2661-3549-05-04-128413
Refbacks
- 当前没有refback。