压力传感器应用于手功能评估初探
摘要
中。这不仅提升了医疗技术的发展,同时,也解决了当前医学界面临的众多问题。借助网络传输下的传感器,作为
数据采集的重要工具,在科技发展的进步中扮演着重要的角色。目前,在医疗应用较多的是压力传感器,可对膀胱、
动脉、静脉等进行压力测定。我们关注到的是可协助医务人员进行手功能评估可穿戴式压力传感器。不同类型传感
器的原理差异决定了其使用的方向的不同。本文就压力传感器的工作原理和手部压力感受器的种类作如下叙述,以
期为后续辅助器具的改进提供部分思路。
关键词
全文:
PDF参考
[1] 孙越,陈晓娟,贾敏,李建霖 . 三叉神经痛阈检
测仪的压力传感器设计与实现 . 长春理工大学学报:自然
科学版,2022 年 1 期
[2]Luo, Y., et al., Devising Materials Manufacturing
Toward Lab‐to‐Fab Translation of Flexible Electronics.
Advanced Materials, 2020. 32(37): p. 2001903.
[3]Wang, X., et al., Sea urchin-like microstructure
pressure sensors with an ultra-broad range and high sensitivity.
Nature Communications, 2021. 12(1).
[4]Wan, Y., et al., Natural Plant Materials as Dielectric
Layer for Highly Sensitive Flexible Electronic Skin. Small,
2018. 14(35): p. 1801657.
[5]Lee, S., et al., An ultrathin conformable vibrationresponsive electronic skin for quantitative vocal recognition.
Nature Communications, 2019. 10(1).
[6]Zhu, M., et al., Self-Powered and Self-Functional
Cotton Sock Using Piezoelectric and Triboelectric Hybrid
Mechanism for Healthcare and Sports Monitoring. ACS nano,
2019. 13(2): p. 1940-1952.
[7]Yang, T., et al., Hierarchically structured PVDF/
ZnO core-shell nanofibers for self-powered physiological
monitoring electronics. Nano Energy, 2020. 72: p. 104706.
[8]Wan, Y., et al., A Highly Sensitive Flexible
Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio
Microstructures. Advanced Electronic Materials, 2018. 4(4): p.
1700586.
[9]He, W., et al., Flexible single-electrode triboelectric
nanogenerators with MXene/PDMS composite film for
biomechanical motion sensors. Nano Energy, 2020. 78: p.
105383.
[10]An_ultra_sensitive_and_rapid_response_speed_
graphene_pressure_sensors_for_electronic_skin_and_health_
monitoring.
[11]Jo, I., et al., Design of a wearable hand exoskeleton
for exercising flexion/extension of the fingers. IEEE Int Conf
Rehabil Robot, 2017. 2017: p. 1615-1620.
[12]Popov D,Gaponov I,R yu JH.Portable exoskeleton
glove with soft structure for hand assistance in activities of
daily living[J],IEEE/ASME Transactions on Mechatronics,
2017,22 ( 2 ) : 865 - 875
[13]Li H,Cheng L. Preliminary study on the design
and control of a pneumatically-actuated hand rehabilitation
device[C]Youth Academic Annual Conference of Chinese
Association of Automation. Hefei,CN: IEEE Press,2017:
860 - 865
[14]Decker M,Kim Y.A hand exoskeleton device for
robot assisted sensory-motor training after stroke[C]IEEE
World Haptics Conference. Munich,DE: IEEE Press,2017:
436 - 441
[15]Ang BWK,Yeow RCH. Print-it-Yourself ( PIY)
glove: a fully 3D printed soft robotic hand rehabilitative
and assistive exoskeleton for stroke patients[C]IEEE.RSJ
International Conference on Intelligent Robots and Systems (
IROS) .Vancouver,BC,CA: IEEE Press,2017: 1219 -
1223
[16]Randazzo L,Iturrate I,Perdikis S,et al. mano:
A wearable hand exoskeleton for activities of daily living and
neurorehabilitation [J].IEEE Robotics & Automation Letters,
2018,3 ( 1 ) : 500 - 507
[17]Conti R,Meli E,Ridolfi A. A novel kinematic
architecture for portable hand exoskeletons[J].Mechatronics,
2016,35: 192 - 207
[18]Decker M,Kim Y.A hand exoskeleton device for
robot assisted sensory-motor training after stroke[C]IEEE
World Haptics Conference. Munich,DE: IEEE Press,2017:
436 - 441
[19]Lince, A., et al., Design and testing of an underactuated surface EMG-driven hand exoskeleton. IEEE Int
Conf Rehabil Robot, 2017. 2017: p. 670-675.
DOI: http://dx.doi.org/10.12361/2661-3549-04-07-95954
Refbacks
- 当前没有refback。