首页出版说明中文期刊中文图书环宇英文官网付款页面

聚丙烯(PP)纤维的表面处理 对水泥砂浆抗硫酸盐腐蚀的影响

乔 巴特, 侯 赛尼
瑞士材料科学与工程系

摘要


硫酸盐侵蚀是最复杂、最有害的化学腐蚀行为之一。硫酸侵蚀后,混凝土会膨胀、开裂、溶解、剥落,强
度下降,影响结构的耐久性。聚丙烯纤维(PP)因其良好的机械性能和抗化学腐蚀能力而被广泛用于各种混凝土结
构中。然而,PP纤维有很多缺点,如表面光滑、亲水性差、分子链中缺乏活性基团、在水泥基材料中结块和分散性
差。这些问题限制了它在水泥基材料中的应用。尽管使用硅烷偶联剂对PP纤维的表面进行改性是有效的,但经过处
理的PP纤维对水泥基材料的抗硫酸盐性能的影响并不明显。在这项研究中,用硅烷偶联剂处理过的PP纤维被用来
研究不同的水泥与沙子的比例(C/S)和处理过的PP纤维的用量对水泥砂浆的抗硫酸盐侵蚀性的影响。此外,通过
X射线衍射(XRD)和扫描电子显微镜(SEM)研究了混凝土的表观形态、质量损失率、抗弯强度、抗腐蚀系数和
微观结构。结果显示,改性后的PP纤维变得粗糙。纤维表面引入了活性基团,这些活性基团很好地分散在砂浆中,
在水泥砂浆中形成了良好的网络分布结构,从而减缓了PP纤维砂浆在硫酸钠溶液中的侵蚀速率。在C/S比为1:1,
处理后的纤维用量为0.6%时,处理后的纤维砂浆表现出了良好的抗硫酸盐性能。此外,单丝纤维浸泡试验表明,在
纤维表面沉积了一层硫酸钠晶体,从而增加了纤维表面的粗糙度和纤维从水泥基体中的拔出力,这一结果表明,经
过处理的PP纤维与水泥基体之间的界面附着力得到了改善,进而使经过处理的PP纤维的抗硫酸盐侵蚀能力得到了
提高。

关键词


聚丙烯纤维;表面改性;水泥砂浆;抗硫酸盐侵蚀性

全文:

PDF


参考


[1]Marcos-Meson, V.; Fischer, G.; Edvardsen, C.;

Skovhus, T.L.; Michel, A. Durability of Steel Fibre Reinforced

Concrete (SFRC) exposed to acid attack–A literature review.

Constr. Build. Mater. 2019, 200, 490–501.

[2]Badagha, D.; Modhera, C.D. An experimental

approach to investigate effects of curing regimes on mechanical

properties and durability of different fibrous mortars. Adv.

Struct. Eng. 2015.

[3]Ranjith, S.; Venkatasubramani, R.; Sreevidya, V.

Comparative Study on Durability Properties of Engineered

Cementitious Composites with Polypropylene Fiber and Glass

Fiber. Arch. Civ. Eng. 2017, 63, 83–101.

[4]Shen, D.; Liu, X.; Zeng, X.; Zhao, X.; Jiang, G. Effect

of polypropylene plastic fibers length on cracking resistance of

highperformance concrete at early age. Constr. Build. Mater.

2020, 244, 117874.

[5]Jorbat, M.H.; Hosseini, M.; Mahdikhani, M. Effect of

Polypropylene Fibers on the Mode I, Mode II, and Mixed-mode

Fracture Toughness and Crack Propagation in Fiber-reinforced

Concrete. Theor. Appl. Fract. Mech. 2020, 109, 102723.

[6]Bhogone, M.V.; Subramaniam, K.V.L. Early-age

Tensile Constitutive Relationships for Steel and Polypropylene

Fiber Reinforced Concrete. Eng. Fract. Mech. 2021, 244,

107556.

[7]Zheng, Z.; Feldman, D. Synthetic fibre-reinforced

concrete. Prog. Polym. Sci. 1995, 20, 185–210.

[8]Yoo, D.Y.; Kim, M.J. High energy absorbent ultrahigh-performance concrete with hybrid steel and polyethylene

fibers. Constr. Build. Mater. 2019, 209, 354–363.

[9]Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Liu, M.Y.J.

Contribution of acrylic fibre addition and ground granulated

blast furnace slag on the properties of lightweight concrete.

Constr. Build. Mater. 2015, 95, 686–695.

[10]Zhang, R.; Jin, L.; Tian, Y.; Dou, G.; Du, X. Static

and dynamic mechanical properties of eco-friendly polyvinyl

alcohol fiberreinforced ultra-high-strength concrete. Struct.

Concr. 2019, 20, 1051–1063.

[11]Sarvaranta, L.; Mikkola, E. Fibre mortar composites

under fire conditions: Effects of ageing and moisture content of

specimens. Mater. Struct. 1994, 27, 532–538.

[12]Yew, M.K.; Mahmud, H.B.; Shafigh, P.; Yew,

M.C. Effects of polypropylene twisted bundle fibers on

the mechanical properties of high strength oil palm shell

lightweight concrete. Mater. Struct. 2015, 49, 1221–1233.




DOI: http://dx.doi.org/10.12361/2661-3549-04-07-98089

Refbacks

  • 当前没有refback。