首页出版说明中文期刊中文图书环宇英文官网付款页面

回收高炉镍铁渣替代砂浆中的浆料:碳铝酸盐的形成、 白硅酸盐水泥的减少和强度的增加

曹 永生, 方 章伟
马来西亚建筑材料研究所

摘要


高炉镍铁渣(BFFS)在生产镍铁合金时产生,用作混凝土或砂浆中的水泥替代品。其降低水泥消耗和提高
性能的效果是有限的。本文参照膏体置换法,使用BFFS置换等体积的白色硅酸盐水泥膏体,获得更大的性能提升。
作者将BFFS与五个替代水平(0%、5%、10%、15%、20%)一起使用,并设计了四个水灰比(0.40、0.45、0.50、0.55)。
本文测量每种混合物的流动性、机械强度、水合产物和孔结构。结果表明,由于水量的减少,砂浆的和易性降低,
但砂浆的28天抗压强度增加,砂浆的水泥含量也降低了33 wt%。X射线衍射(XRD)图谱显示存在碳铝酸盐相,钙
矾石的存在稳定,表明砂浆水化产物的积累量增加。此外,由于其火山灰活性,BFFS可以消耗硅酸盐和游离水以形
成更高量的化学结合水。高水化度和大量的水化产物细化了硬化砂浆的孔隙率,这解释了砂浆强度的提高。与水泥
置换法相比,膏体置换法通过回收BFFS来降低砂浆的水泥含量,同时提高其强度,在制备环保砂浆或混凝土方面更
为有效。

关键词


镍铁渣废料;力量;碳铝酸盐;钙矾石稳定;碳足迹

全文:

PDF


参考


[1]Li, B.; Huo, B.; Cao, R.; Wang, S.; Zhang, Y. Sulfate

Resistance of Steam Cured Ferronickel Slag Blended Cement

Mortar. Cem. Concr. Compos. 2019, 96, 204–211.

[2]Wang, Q.; Shi, M.; Zhou, Y.; Yu, C. Influence of

Ferro-Nickel Slag Powder on the Sulfate Attack Resistance of

Concrete. J. Tsinghua Univ. 2017, 57, 306–311.

[3]Kang, S.; Park, K.; Kim, D. Potential Soil

Contamination in Areas Where Ferronickel Slag is Used for

Reclamation Work. Materials 2014, 7, 7157–7172.

[4]Han, C.; Hong, Y.C. Adverse Health Effects of

Ferronickel Manufacturing Factory on Local Residents: An

Interrupted Time Series Analysis. Environ. Int. 2018, 114,

288–296.

[5]Dhal, B.; Thatoi, H.N.; Das, N.N.; Pandey, B.D.

Chemical and Microbial Remediation of Hexavalent Chromium

from Contaminated Soil and Mining/Metallurgical Solid Waste:

A Review. J. Hazard. Mater. 2013, 250–251, 272–291.

[6]Yang, T.; Yao, X.; Zhang, Z. Geopolymer Prepared with

High-Magnesium Nickel Slag: Characterization of Properties

and Microstructure. Constr. Build. Mater. 2014, 59, 188–194.

[7]Saha, A.K.; Sarker, P.K.; Majhi, S. Effect of Elevated

Temperatures on Concrete Incorporating Ferronickel Slag as

Fine Aggregate. Fire Mater. 2019, 43, 8–21.

[8]Saha, A.K.; Sarker, P.K.; Golovanevskiy, V. Thermal

Properties and Residual Strength after High Temperature

Exposure of Cement Mortar Using Ferronickel Slag Aggregate.

Constr. Build. Mater. 2019, 199, 601–612.

[9]Saha, A.K.; Khan, M.N.N.; Sarker, P.K. Value Added

Utilization of By-Product Electric Furnace Ferronickel Slag as

Construction Materials: A Review. Resour. Conserv. Recycl.

2018, 134, 10–24.

[10]Maragkos, I.; Giannopoulou, I.P.; Panias, D. Synthesis

of Ferronickel Slag-Based Geopolymers. Miner. Eng. 2009, 22,

196–203.

[11]Wang, Q.; Huang, Z.; Wang, D. Influence of HighVolume Electric Furnace Nickel Slag and Phosphorous Slag on

the Properties of Massive Concrete. J. Therm. Anal. Calorim.

2018, 131, 873–885.

[12]Yang, T.; Wu, Q.; Zhu, H.; Zhang, Z. Geopolymer with

Improved Thermal Stability by Incorporating High-Magnesium

Nickel Slag. Constr. Build. Mater. 2017, 155, 475–484.


Refbacks

  • 当前没有refback。