首页出版说明中文期刊中文图书环宇英文官网付款页面

基于经验的钢筋长期腐蚀物理化学模型

罗伯 特·
纽卡斯尔大学基础设施性能和可靠性中心

摘要


钢筋的长期腐蚀进程对于评估钢筋混凝土基础设施的寿命至关重要。对现场经验和近期受控长期试验结果
的回顾表明,钢筋腐蚀的发展比经典的经验Tuutti模型要复杂得多。提出了一个新的综合模型,该模型参考了许多
现场和实验室观测的观察结果和推论,并建立在钢腐蚀的双模模型之上。它包括混凝土-钢界面处混凝土中气孔的
关键作用,以及氯化物加速的长期碱溶作用。两者都受到压实度和混凝土渗透性的影响。氯化物在早期阶段的作用
仅限于空隙内的点蚀。这些对允许引发至关重要,而它们的尺寸影响早期腐蚀的严重程度。经验数据表明,对于平
均水温在10-20℃范围内的海水,相应的长期腐蚀速率ra在0.012-0.015 mm/y范围内。

关键词


钢筋;腐蚀氯化物;进展碱度;开裂

全文:

PDF


参考


1. Angst, U.M.; Geiker, M.R.; Alonso, M.C.; Polder, R.;

Isgor, O.B.; Elsener, B.; Wong, H.; Michel, A.; Hornbostel, K.;

Gehlen, C.; et al. The effect of the steel-concrete interface on

chloride-induced corrosion initiation in concrete: A critical

review by RILEM TC 262-SCI. Mater. Corros. 2019, 52, 88.

[CrossRef]

2. Melchers, R.E. Observations about the time to

commencement of reinforcement corrosion for concrete

structures in marine environments. In Consec’10, Concrete

under Severe Conditions; Castro-Borges, P., Moreno, E., Sakai,

K., Gjorv, O.E., Banthia, N., Eds.; CRC Press: Boca Raton, FL,

USA, 2010; pp. 617–624.

3. Melchers, R.E. Carbonates, carbonation and the

durability of reinforced concrete marine structures. Aust. J.

Struct. Eng. 2010, 10, 215–226. [CrossRef]

4. Melchers, R.E.; Chaves, I.A. A comparative study of

chlorides and longer-term reinforcement corrosion. Mater.

Corros. 2017, 68, 613–621. [CrossRef]

5. Melchers, R.E.; Pape, T.M.; Chaves, I.A.; Heywood,

R. Long-term durability of reinforced concrete piles from the

Hornibrook Highway bridge. Aust. J. Struct. Eng. 2017, 18,

41–57. [CrossRef]

6. Anteagroup. Etude sur L’etat de Conservation du Port

Artificiel Winston Churchill, Phase 0 Analyse Documentaire

(Rapport A78136/B), Phase 1–Diagnostic des Vestiges

(Rapport A79782/B); Anteagroup: Paris, France, September

2015.

7. Melchers, R.E.; Howlett, C.H. Reinforcement corrosion

of the Phoenix caissons after 75 years of marine exposure.

Proc. Inst. Civ. Engrs. Marit. Eng. 2020. [CrossRef]

8. Wakeman, C.M.; Dockweiler, E.V.; Stover, H.E.;

Whiteneck, L.L. Use of concrete in marine environments. Proc.

ACI 1958, 54, 841–856, Discussion 54, 1309–1346.

9. Lukas, W. Relationship between chloride content

in concrete and corrosion in untensioned reinforcement on

Austrian bridges and concrete road surfacings. Betonw. Fert.

Tech. 1985, 51, 730–734.

10. Sagüés, A.A.; Kranc, S.C.; Presuel-Moreno, F.;

Rey, D.; Torres-Costa, A.; Yao, L. Corrosion Forecasting for

75-Year Durability Design of Reinforced Concrete, Final

Report to Florida Department of Transport; University of South

Florida: Tampa, FL, USA, 2001.

11. Lau, K.; Sagüés, A.A.; Yao, L.; Powers, R.G.

Corrosion performance of concrete cylinder piles. Corrosion

2007, 63, 366–378. [CrossRef]

12. Melchers, R.E.; Chaves, I.A. Reinforcement corrosion

in marine concretes–1. Initiation. ACI Mater. J. 2019, 116,

57–66. [CrossRef]

13. Melchers, R.E.; Chaves, I.A. Reinforcement Corrosion

in Marine Concretes–2. Long-Term Effects. ACI Mater. J.

2020, 117, 217–228. [CrossRef]

14. Melchers, R.E.; Li, C.Q. Phenomenological modelling

of corrosion loss of steel reinforcement in marine environments.

ACI Mater. J. 2006, 103, 25–32.

15. Raupach, M. Models for the propagation phase of

reinforcement corrosion–An overview. Mater. Corros. 2006,

57, 605–613. [CrossRef]

16. Andrade, C. Propagation of reinforcement corrosion:

Principles, testing and modelling. Mater. Struct. 2019, 52,

1–26. [CrossRef]

17. Stockert, L.; Haas, M.; Jeffrey, R.J.; Melchers, R.E.

Electrochemical measurements and short-term-in-situ

exposure testing. In Proceedings of the Corrosion & Prevention,

Melbourne, Australia, 11–14 November 2012. CD ROM,

Paper No. 100.

18. Burkowsky, B.; Englot, J. Analyzing good deck

performance on Port Authority bridges. Concr. Int. 1988, 10,

25–33.

19. Wallbank, E.J. The Performance of Concrete in

Bridges. A Survey of 200 Highway Bridges; Department of

Transport, HMSO: London, UK, 1989.

20. Gjorv, O.E. Steel corrosion in concrete structures

exposed to Norwegian marine environment. Concr. Int. 1994,

16, 35–39.

21. Gulikers, J.; Raupach, M. Modelling o reinforcement

corrosion in concrete. Mater. Corros. 2006, 57, 603–604.

[CrossRef]

22. Hornbostel, K.; Angst, U.M.; Elsener, B.; Larsen, C.K.;

Geiker, M.R. Influence of mortar resistivity on the rate-limiting

step of chloride0induced macro-cell corrosion of reinforcing

steel. Corros. Sci. 2016, 110, 46–56. [CrossRef]

23. Sassine, E.; Laurens, S.; François, R.; Ringot, E. A

critical discussion on rebar electrical continuity and usual

interpretation thresholds in the field of half-cell potential

measurements in steel reinforced concrete. Mater. Struct. 2018,

51, 93. [CrossRef]

24. Kelly, R.G.; Scully, J.R.; Shoesmith, D.W.; Buchheit,

R.G. Electrochemical Techniques in Corrosion Science and

Engineering; Marcel Dekker: New York, NY, USA, 2002.

25. Tuutti, K. Corrosion of steel in concrete, Swedish

Cement and Concrete Research Institute, Stockholm, Research

Report No. 4. 1982. See also Service life of structures with

regard to corrosion of embedded steel. In Performance of

Concrete in Marine Environment; ACI SP-65; American

Concrete Institute: Detroit, MI, USA, 1984; pp. 223–236.

26. Clear, K.C. Time-to-Corrosion for Reinforcing

Steel in Concrete Slabs, V. 3: Performance after 830 Daily

Salt Applications, FHWA-RD-76-70; Federal Highway

Administration: Washington, DC, USA, 1976; 64p.

27. François, R.; Arliguie, G.; Maso, J.-C. Durabilité du

béton armé soumis à l’action des chlorures. Ann. l’Institut

Tech. Batim. Trav. Publics 1994, 529, 1–48.

28. Yu, L.; François, R.; Dang, V.H.; l’Hostis, V.;

Gagné, R. Development of chloride-induced corrosion in

pre-cracked RC beams under sustained loading: Effect of

load-induced cracks, concrete cover, and exposure conditions.

Cem. Concr. Res. 2015, 67, 246–258. [CrossRef]

29. CIB Commission W81 Actions on Structures: Live

Loads in Buildings; CIB Report No. 116; International Council

for Research and Innovation in Building and Construction,

AIBC: Ottawa, ON, Canada, 1989.

30. Foley, T.R. The role of the chloride ion in iron

corrosion. Corrosion 1970, 26, 58–70. [CrossRef]

31. Heyn, E.; Bauer, O. Ueber den Angriff des Eisens

durch Wasser und wässerige Losungen. Stahl Eisen 1908, 28,

1564–1573.

32. Mercer, A.D.; Lumbard, E.A. Corrosion of mild steel

in water. Br. Corros. J. 1995, 30, 43–55. [CrossRef]

33. Angst, U.M.; Elsener, B.; Larsen, C.K.; Vennesland,

O. Critical chloride content in reinforced concrete–A review.

Cem. Concr. Res. 2009, 39, 1122–1138. [CrossRef]

34. Zhu, W.; François, R.; Liu, Y. Propagation of

corrosion and corrosion patterns of bars embedded in RC

beams stored in chloride environment for various periods.

Constr. Build. Mater. 2017, 145, 147–156. [CrossRef]

35. Loreto, G.; di Benedetti, M.; De Luca, A.; Nanni,

A. Assessment of reinforced concrete structures in marine

environment: A case study. Corros. Rev. 2018, 37. [CrossRef]

36. Chalhoub, C.; François, R.; Carcasses, M. Critical

chloride threshold values as a function of cement type and

steel surface conditions. Cem. Concr. Res. 2020, 134, 106086.

[CrossRef]

37. Chitty, W.-J.; Dillmann, P.; L’Hostis, V.; Millard,

A. Long-term corrosion of rebars embedded in aerial and

hydraulic binders–Parametric study and first step of

modelling. Corros. Sci. 2008, 50, 3047–3055. [CrossRef]

38. Melchers, R.E. Modeling of marine immersion

c o r r o s i o n f o r m i l d a n d l o w a l l o y s t e e l s – P a r t 1 :

Phenomenological model. Corrosion 2003, 59, 319–334.

[CrossRef]

39. Melchers, R.E. Modelling durability of reinforced

concrete structures. Corros. Eng. Sci. Technol. 2020, 55,

171–181. [CrossRef]

40. Melchers, R.E. A review of trends for corrosion loss

and pit depth in longer-term exposures. Corros. Mater. Degrad.

2018, 1, 4. [CrossRef]

41. Wranglen, G. Pitting and Sulphide Inclusions in Steel.

Corros. Sci. 1974, 14, 331–349. [CrossRef]

42. Evans, U.R.; Taylor, C.A.J. Mechanism of atmospheric

rusting. Corros. Sci. 1972, 12, 227–246. [CrossRef]

43. Stratmann, M.; Bohnenkamp, K.; Engell, H.J. An

electrochemical study of phase-transitions in rust layers.

Corros. Sci. 1983, 23, 969–985. [CrossRef]

44. Southwell, C.R.; Bultman, J.D.; Alexander, A.L.

Corrosion of metals in Tropical environmwnts–Final report of

16 years exposures. Mater. Perform. 1976, 15, 9–25.

45. Melchers, R.E.; Chernov, B.B. Corrosion loss of mild

steel in high temperature hard freshwater. Corros. Sci. 2010,

52, 449–454. [CrossRef]

46. Pourbaix, M. Significance of protection potential in

pitting and intergranular corrosion. Corrosion 1970, 6, 431–

438. [CrossRef]

47. Shalon, R.; Raphael, M. Influence of seawater of

corrosion of reinforcement. J. ACI 1959, 30, 1251–1268.

48. Poursaee, A.; Hansen, C.M. Potential pitfalls in

assessing chloride-induced corrosion of steel in concrete. Cem.

Concr. Res. 2009, 39, 391–400. [CrossRef]

49. Friedland, R. Influence of the quality of mortar and

concrete upon corrosion of reinforcement. J. ACI 1950, 22,

125–139.

50. François, R.; Arliguie, G. Effect of microcracking

and cracking on the development of corrosion in reinforced

concrete members. Mag. Concr. Res. 1999, 51, 143–150.

[CrossRef]

51. Stineman, R.W. A consistently well-behaved method

of interpolation. Creat. Comput. 1980, 6, 54–57.

52. Richardson, M.G. Fundamentals of Durable

Reinforced Concrete; SponPress: London, UK, 2002.

53. Gupta, K.; Gupta, B.K. The critical soil moisture

content in the underground corrosion of mild steel. Corros Sci.

1979, 19, 171–178.[CrossRef]

54. Burns, M.; Salley, D.J. Particle size as a factor in the

corrosion of lead by soils. Ind. Eng. Chem. 1930, 22, 293–

297. [CrossRef]

55. Petersen, R.B.; Melchers, R.E. Effect of moisture

content and compaction on the corrosion of mild steel buried

in clay soils. Corros. Eng. Sci. Technol. 2019, 54, 587–600.

[CrossRef]

56. Beaton, J.L.; Spellman, D.L.; Stratfull, R.P. Corrosion

of steel in continuously submerged reinforced concrete piling.

Highw. Res. Rec. 1967, 204, 11–21.

57. Stewart, M.G.; Rosowsky, D.V. Structural safety

and serviceability of concrete bridges subject to corrosion. J.

Infrastruct. Syst. 1998, 4, 146–155. [CrossRef]

58. Dhir, R.K.; Jones, M.R. McCarthy, M.J. PFA concrete:

Chloride-induced reinforcement corrosion. Mag. Conc. Res.

1994, 46, 269–277. [CrossRef]

59. Thoft-Christensen, P.; Jensen, F.M.; Middleton, C.;

Blackmore, A. Revised rules for concrete bridges. In Safety of

Bridges; Highway Agency: London, UK, 1996; pp. 1–12.

60. Andrade, C.; Alonso, M.C. Values of corrosion rate of

steel in concrete to predict service life of concrete structures.

In Application of Accelerated Corrosion Tests to Service Life

Prediction of Materials, ASTM STP 1194; Cragnolino, G.,

Sridhar, N., Eds.; ASTM: Philadelphia, PA, USA, 1994; 282p.

61. Johnston, J.; Grove, C. The solubility of calcium

hydroxide in aqueous salt solutions. J. Am. Chem. Soc. 1931,

53, 3976–3991. [CrossRef]

62. Beeby, A.W. Corrosion of reinforcing steel in concrete

and its relation to cracking. Struct. Eng. 1978, 56, 77–80.

63. Schiessl, P.; Raupach, M. Laboratory studies and

calculations on the influence of crack width on chlorideinduced corrosion of steel in concrete. ACI Mater. J. 1997, 94,

56–61.

64. Makita, M.; Mori, Y.; Katawaki, K. Marine Corrosion

Behavior of Reinfroced Concrete Exposed in Tokyo Bay; SP

65-16; American Concrete Institute: Indianapolis, IN, USA,

1980; pp. 271–289.

65. Lewis, D.A.; Copenhagen, W.J. The corrosion of

reinforcing steel in concrete in marine atmospheres. S. Afr.

Ind. Chem. 1957, 15, 207–219. [CrossRef]

66. Melchers, R.E.; Li, C.Q.; Davison, M.A. Observations

and analysis of a 63-year old reinforced concrete promenade

railing exposed to the North Sea. Mag. Concr. Res. 2009, 61,

233–243. [CrossRef]

67. Melchers, R.E.; Li, C.Q. Reinforcement corrosion

in concrete exposed to the North Sea for more than 60 years.

Corrosion 2009, 65, 554–566. [CrossRef]

68. Jeffrey, R.; Melchers, R.E. The changing topography

of corroding mild steel surfaces in seawater. Corros. Sci. 2007,

49, 2270–2288. [CrossRef]

69. Reger, M.; Vero, B.; Kardos, I.; Varga, P. The effect

of alloying elements on the stability of centreline segregation.

Defect Diffus. Forum 2010, 297–301, 148–153. [CrossRef]

70. Melchers, R.E.; Jeffrey, R.J.; Usher, K.M. Localized

corrosion of steel sheet piling. Corros. Sci. 2014, 79, 139–

147. [CrossRef]

71. Cornell, R.M.; Schwertmann, U. The Iron Oxides:

Structure, Properties, Reactions, Occurences and Uses, 7th

ed.; VCH Publishers: Weinheim, Germany, 1996.

72. Nawy, E.G. Concrete Construction Engineering

Handbook; CRC Press: Boca Raton, FL, USA, 2008; pp. 30–57.

73. Horne, A.T.; Richardson, I.G.; Brydson, R.M.D.

Quantitative analysis of the microstructure of interfaces in steel

reinforced concrete. Cem. Conc. Res. 2007, 37, 1613–1623.

[CrossRef]

74. Zhang, W.; Yu, L.; François, R. Inluence of topcasting-induced defects on the corrosion of the compressive

reinforcement of naturally corroded beams under sustained

loading. Constr. Build. Mater. 2019, 229, 116912. [CrossRef]

75. Melchers, R.E.; Li, C.Q. Reinforcement corrosion

initiation and activation times in concrete structures exposed

to severe marine environments. Cem. Concr. Res. 2009, 39,

1068–1076. [CrossRef]

76. Morley, J. The corrosion and protection of steel-piled

structures. Struct. Surv. 1993, 7, 138–151. [CrossRef]

77. Wichers, C.M. Korrosion asphaltierter eiserner Rohre.

Das Gas Und Wasserfach 1934, 77, 131–132.

78. Melchers, R.E. Long-term durability of marine

reinforced concrete structures. J. Mar. Sci. Eng. 2020, 8, 290.

[CrossRef]


Refbacks

  • 当前没有refback。