基于经验的钢筋长期腐蚀物理化学模型
摘要
的回顾表明,钢筋腐蚀的发展比经典的经验Tuutti模型要复杂得多。提出了一个新的综合模型,该模型参考了许多
现场和实验室观测的观察结果和推论,并建立在钢腐蚀的双模模型之上。它包括混凝土-钢界面处混凝土中气孔的
关键作用,以及氯化物加速的长期碱溶作用。两者都受到压实度和混凝土渗透性的影响。氯化物在早期阶段的作用
仅限于空隙内的点蚀。这些对允许引发至关重要,而它们的尺寸影响早期腐蚀的严重程度。经验数据表明,对于平
均水温在10-20℃范围内的海水,相应的长期腐蚀速率ra在0.012-0.015 mm/y范围内。
关键词
全文:
PDF参考
1. Angst, U.M.; Geiker, M.R.; Alonso, M.C.; Polder, R.;
Isgor, O.B.; Elsener, B.; Wong, H.; Michel, A.; Hornbostel, K.;
Gehlen, C.; et al. The effect of the steel-concrete interface on
chloride-induced corrosion initiation in concrete: A critical
review by RILEM TC 262-SCI. Mater. Corros. 2019, 52, 88.
[CrossRef]
2. Melchers, R.E. Observations about the time to
commencement of reinforcement corrosion for concrete
structures in marine environments. In Consec’10, Concrete
under Severe Conditions; Castro-Borges, P., Moreno, E., Sakai,
K., Gjorv, O.E., Banthia, N., Eds.; CRC Press: Boca Raton, FL,
USA, 2010; pp. 617–624.
3. Melchers, R.E. Carbonates, carbonation and the
durability of reinforced concrete marine structures. Aust. J.
Struct. Eng. 2010, 10, 215–226. [CrossRef]
4. Melchers, R.E.; Chaves, I.A. A comparative study of
chlorides and longer-term reinforcement corrosion. Mater.
Corros. 2017, 68, 613–621. [CrossRef]
5. Melchers, R.E.; Pape, T.M.; Chaves, I.A.; Heywood,
R. Long-term durability of reinforced concrete piles from the
Hornibrook Highway bridge. Aust. J. Struct. Eng. 2017, 18,
41–57. [CrossRef]
6. Anteagroup. Etude sur L’etat de Conservation du Port
Artificiel Winston Churchill, Phase 0 Analyse Documentaire
(Rapport A78136/B), Phase 1–Diagnostic des Vestiges
(Rapport A79782/B); Anteagroup: Paris, France, September
2015.
7. Melchers, R.E.; Howlett, C.H. Reinforcement corrosion
of the Phoenix caissons after 75 years of marine exposure.
Proc. Inst. Civ. Engrs. Marit. Eng. 2020. [CrossRef]
8. Wakeman, C.M.; Dockweiler, E.V.; Stover, H.E.;
Whiteneck, L.L. Use of concrete in marine environments. Proc.
ACI 1958, 54, 841–856, Discussion 54, 1309–1346.
9. Lukas, W. Relationship between chloride content
in concrete and corrosion in untensioned reinforcement on
Austrian bridges and concrete road surfacings. Betonw. Fert.
Tech. 1985, 51, 730–734.
10. Sagüés, A.A.; Kranc, S.C.; Presuel-Moreno, F.;
Rey, D.; Torres-Costa, A.; Yao, L. Corrosion Forecasting for
75-Year Durability Design of Reinforced Concrete, Final
Report to Florida Department of Transport; University of South
Florida: Tampa, FL, USA, 2001.
11. Lau, K.; Sagüés, A.A.; Yao, L.; Powers, R.G.
Corrosion performance of concrete cylinder piles. Corrosion
2007, 63, 366–378. [CrossRef]
12. Melchers, R.E.; Chaves, I.A. Reinforcement corrosion
in marine concretes–1. Initiation. ACI Mater. J. 2019, 116,
57–66. [CrossRef]
13. Melchers, R.E.; Chaves, I.A. Reinforcement Corrosion
in Marine Concretes–2. Long-Term Effects. ACI Mater. J.
2020, 117, 217–228. [CrossRef]
14. Melchers, R.E.; Li, C.Q. Phenomenological modelling
of corrosion loss of steel reinforcement in marine environments.
ACI Mater. J. 2006, 103, 25–32.
15. Raupach, M. Models for the propagation phase of
reinforcement corrosion–An overview. Mater. Corros. 2006,
57, 605–613. [CrossRef]
16. Andrade, C. Propagation of reinforcement corrosion:
Principles, testing and modelling. Mater. Struct. 2019, 52,
1–26. [CrossRef]
17. Stockert, L.; Haas, M.; Jeffrey, R.J.; Melchers, R.E.
Electrochemical measurements and short-term-in-situ
exposure testing. In Proceedings of the Corrosion & Prevention,
Melbourne, Australia, 11–14 November 2012. CD ROM,
Paper No. 100.
18. Burkowsky, B.; Englot, J. Analyzing good deck
performance on Port Authority bridges. Concr. Int. 1988, 10,
25–33.
19. Wallbank, E.J. The Performance of Concrete in
Bridges. A Survey of 200 Highway Bridges; Department of
Transport, HMSO: London, UK, 1989.
20. Gjorv, O.E. Steel corrosion in concrete structures
exposed to Norwegian marine environment. Concr. Int. 1994,
16, 35–39.
21. Gulikers, J.; Raupach, M. Modelling o reinforcement
corrosion in concrete. Mater. Corros. 2006, 57, 603–604.
[CrossRef]
22. Hornbostel, K.; Angst, U.M.; Elsener, B.; Larsen, C.K.;
Geiker, M.R. Influence of mortar resistivity on the rate-limiting
step of chloride0induced macro-cell corrosion of reinforcing
steel. Corros. Sci. 2016, 110, 46–56. [CrossRef]
23. Sassine, E.; Laurens, S.; François, R.; Ringot, E. A
critical discussion on rebar electrical continuity and usual
interpretation thresholds in the field of half-cell potential
measurements in steel reinforced concrete. Mater. Struct. 2018,
51, 93. [CrossRef]
24. Kelly, R.G.; Scully, J.R.; Shoesmith, D.W.; Buchheit,
R.G. Electrochemical Techniques in Corrosion Science and
Engineering; Marcel Dekker: New York, NY, USA, 2002.
25. Tuutti, K. Corrosion of steel in concrete, Swedish
Cement and Concrete Research Institute, Stockholm, Research
Report No. 4. 1982. See also Service life of structures with
regard to corrosion of embedded steel. In Performance of
Concrete in Marine Environment; ACI SP-65; American
Concrete Institute: Detroit, MI, USA, 1984; pp. 223–236.
26. Clear, K.C. Time-to-Corrosion for Reinforcing
Steel in Concrete Slabs, V. 3: Performance after 830 Daily
Salt Applications, FHWA-RD-76-70; Federal Highway
Administration: Washington, DC, USA, 1976; 64p.
27. François, R.; Arliguie, G.; Maso, J.-C. Durabilité du
béton armé soumis à l’action des chlorures. Ann. l’Institut
Tech. Batim. Trav. Publics 1994, 529, 1–48.
28. Yu, L.; François, R.; Dang, V.H.; l’Hostis, V.;
Gagné, R. Development of chloride-induced corrosion in
pre-cracked RC beams under sustained loading: Effect of
load-induced cracks, concrete cover, and exposure conditions.
Cem. Concr. Res. 2015, 67, 246–258. [CrossRef]
29. CIB Commission W81 Actions on Structures: Live
Loads in Buildings; CIB Report No. 116; International Council
for Research and Innovation in Building and Construction,
AIBC: Ottawa, ON, Canada, 1989.
30. Foley, T.R. The role of the chloride ion in iron
corrosion. Corrosion 1970, 26, 58–70. [CrossRef]
31. Heyn, E.; Bauer, O. Ueber den Angriff des Eisens
durch Wasser und wässerige Losungen. Stahl Eisen 1908, 28,
1564–1573.
32. Mercer, A.D.; Lumbard, E.A. Corrosion of mild steel
in water. Br. Corros. J. 1995, 30, 43–55. [CrossRef]
33. Angst, U.M.; Elsener, B.; Larsen, C.K.; Vennesland,
O. Critical chloride content in reinforced concrete–A review.
Cem. Concr. Res. 2009, 39, 1122–1138. [CrossRef]
34. Zhu, W.; François, R.; Liu, Y. Propagation of
corrosion and corrosion patterns of bars embedded in RC
beams stored in chloride environment for various periods.
Constr. Build. Mater. 2017, 145, 147–156. [CrossRef]
35. Loreto, G.; di Benedetti, M.; De Luca, A.; Nanni,
A. Assessment of reinforced concrete structures in marine
environment: A case study. Corros. Rev. 2018, 37. [CrossRef]
36. Chalhoub, C.; François, R.; Carcasses, M. Critical
chloride threshold values as a function of cement type and
steel surface conditions. Cem. Concr. Res. 2020, 134, 106086.
[CrossRef]
37. Chitty, W.-J.; Dillmann, P.; L’Hostis, V.; Millard,
A. Long-term corrosion of rebars embedded in aerial and
hydraulic binders–Parametric study and first step of
modelling. Corros. Sci. 2008, 50, 3047–3055. [CrossRef]
38. Melchers, R.E. Modeling of marine immersion
c o r r o s i o n f o r m i l d a n d l o w a l l o y s t e e l s – P a r t 1 :
Phenomenological model. Corrosion 2003, 59, 319–334.
[CrossRef]
39. Melchers, R.E. Modelling durability of reinforced
concrete structures. Corros. Eng. Sci. Technol. 2020, 55,
171–181. [CrossRef]
40. Melchers, R.E. A review of trends for corrosion loss
and pit depth in longer-term exposures. Corros. Mater. Degrad.
2018, 1, 4. [CrossRef]
41. Wranglen, G. Pitting and Sulphide Inclusions in Steel.
Corros. Sci. 1974, 14, 331–349. [CrossRef]
42. Evans, U.R.; Taylor, C.A.J. Mechanism of atmospheric
rusting. Corros. Sci. 1972, 12, 227–246. [CrossRef]
43. Stratmann, M.; Bohnenkamp, K.; Engell, H.J. An
electrochemical study of phase-transitions in rust layers.
Corros. Sci. 1983, 23, 969–985. [CrossRef]
44. Southwell, C.R.; Bultman, J.D.; Alexander, A.L.
Corrosion of metals in Tropical environmwnts–Final report of
16 years exposures. Mater. Perform. 1976, 15, 9–25.
45. Melchers, R.E.; Chernov, B.B. Corrosion loss of mild
steel in high temperature hard freshwater. Corros. Sci. 2010,
52, 449–454. [CrossRef]
46. Pourbaix, M. Significance of protection potential in
pitting and intergranular corrosion. Corrosion 1970, 6, 431–
438. [CrossRef]
47. Shalon, R.; Raphael, M. Influence of seawater of
corrosion of reinforcement. J. ACI 1959, 30, 1251–1268.
48. Poursaee, A.; Hansen, C.M. Potential pitfalls in
assessing chloride-induced corrosion of steel in concrete. Cem.
Concr. Res. 2009, 39, 391–400. [CrossRef]
49. Friedland, R. Influence of the quality of mortar and
concrete upon corrosion of reinforcement. J. ACI 1950, 22,
125–139.
50. François, R.; Arliguie, G. Effect of microcracking
and cracking on the development of corrosion in reinforced
concrete members. Mag. Concr. Res. 1999, 51, 143–150.
[CrossRef]
51. Stineman, R.W. A consistently well-behaved method
of interpolation. Creat. Comput. 1980, 6, 54–57.
52. Richardson, M.G. Fundamentals of Durable
Reinforced Concrete; SponPress: London, UK, 2002.
53. Gupta, K.; Gupta, B.K. The critical soil moisture
content in the underground corrosion of mild steel. Corros Sci.
1979, 19, 171–178.[CrossRef]
54. Burns, M.; Salley, D.J. Particle size as a factor in the
corrosion of lead by soils. Ind. Eng. Chem. 1930, 22, 293–
297. [CrossRef]
55. Petersen, R.B.; Melchers, R.E. Effect of moisture
content and compaction on the corrosion of mild steel buried
in clay soils. Corros. Eng. Sci. Technol. 2019, 54, 587–600.
[CrossRef]
56. Beaton, J.L.; Spellman, D.L.; Stratfull, R.P. Corrosion
of steel in continuously submerged reinforced concrete piling.
Highw. Res. Rec. 1967, 204, 11–21.
57. Stewart, M.G.; Rosowsky, D.V. Structural safety
and serviceability of concrete bridges subject to corrosion. J.
Infrastruct. Syst. 1998, 4, 146–155. [CrossRef]
58. Dhir, R.K.; Jones, M.R. McCarthy, M.J. PFA concrete:
Chloride-induced reinforcement corrosion. Mag. Conc. Res.
1994, 46, 269–277. [CrossRef]
59. Thoft-Christensen, P.; Jensen, F.M.; Middleton, C.;
Blackmore, A. Revised rules for concrete bridges. In Safety of
Bridges; Highway Agency: London, UK, 1996; pp. 1–12.
60. Andrade, C.; Alonso, M.C. Values of corrosion rate of
steel in concrete to predict service life of concrete structures.
In Application of Accelerated Corrosion Tests to Service Life
Prediction of Materials, ASTM STP 1194; Cragnolino, G.,
Sridhar, N., Eds.; ASTM: Philadelphia, PA, USA, 1994; 282p.
61. Johnston, J.; Grove, C. The solubility of calcium
hydroxide in aqueous salt solutions. J. Am. Chem. Soc. 1931,
53, 3976–3991. [CrossRef]
62. Beeby, A.W. Corrosion of reinforcing steel in concrete
and its relation to cracking. Struct. Eng. 1978, 56, 77–80.
63. Schiessl, P.; Raupach, M. Laboratory studies and
calculations on the influence of crack width on chlorideinduced corrosion of steel in concrete. ACI Mater. J. 1997, 94,
56–61.
64. Makita, M.; Mori, Y.; Katawaki, K. Marine Corrosion
Behavior of Reinfroced Concrete Exposed in Tokyo Bay; SP
65-16; American Concrete Institute: Indianapolis, IN, USA,
1980; pp. 271–289.
65. Lewis, D.A.; Copenhagen, W.J. The corrosion of
reinforcing steel in concrete in marine atmospheres. S. Afr.
Ind. Chem. 1957, 15, 207–219. [CrossRef]
66. Melchers, R.E.; Li, C.Q.; Davison, M.A. Observations
and analysis of a 63-year old reinforced concrete promenade
railing exposed to the North Sea. Mag. Concr. Res. 2009, 61,
233–243. [CrossRef]
67. Melchers, R.E.; Li, C.Q. Reinforcement corrosion
in concrete exposed to the North Sea for more than 60 years.
Corrosion 2009, 65, 554–566. [CrossRef]
68. Jeffrey, R.; Melchers, R.E. The changing topography
of corroding mild steel surfaces in seawater. Corros. Sci. 2007,
49, 2270–2288. [CrossRef]
69. Reger, M.; Vero, B.; Kardos, I.; Varga, P. The effect
of alloying elements on the stability of centreline segregation.
Defect Diffus. Forum 2010, 297–301, 148–153. [CrossRef]
70. Melchers, R.E.; Jeffrey, R.J.; Usher, K.M. Localized
corrosion of steel sheet piling. Corros. Sci. 2014, 79, 139–
147. [CrossRef]
71. Cornell, R.M.; Schwertmann, U. The Iron Oxides:
Structure, Properties, Reactions, Occurences and Uses, 7th
ed.; VCH Publishers: Weinheim, Germany, 1996.
72. Nawy, E.G. Concrete Construction Engineering
Handbook; CRC Press: Boca Raton, FL, USA, 2008; pp. 30–57.
73. Horne, A.T.; Richardson, I.G.; Brydson, R.M.D.
Quantitative analysis of the microstructure of interfaces in steel
reinforced concrete. Cem. Conc. Res. 2007, 37, 1613–1623.
[CrossRef]
74. Zhang, W.; Yu, L.; François, R. Inluence of topcasting-induced defects on the corrosion of the compressive
reinforcement of naturally corroded beams under sustained
loading. Constr. Build. Mater. 2019, 229, 116912. [CrossRef]
75. Melchers, R.E.; Li, C.Q. Reinforcement corrosion
initiation and activation times in concrete structures exposed
to severe marine environments. Cem. Concr. Res. 2009, 39,
1068–1076. [CrossRef]
76. Morley, J. The corrosion and protection of steel-piled
structures. Struct. Surv. 1993, 7, 138–151. [CrossRef]
77. Wichers, C.M. Korrosion asphaltierter eiserner Rohre.
Das Gas Und Wasserfach 1934, 77, 131–132.
78. Melchers, R.E. Long-term durability of marine
reinforced concrete structures. J. Mar. Sci. Eng. 2020, 8, 290.
[CrossRef]
Refbacks
- 当前没有refback。