首页出版说明中文期刊中文图书环宇英文官网付款页面

碱活化砌块生态住宅原型建设的设计、 施工和对环境的影响

红宝 石瓦, 阿曼 多·, 桑德 拉·, 威廉 ·拉
哥伦比亚大学材料工程学院

摘要


建筑行业对碱活化材料的兴趣已经增加,以至于这些材料被认为是寻求可持续建筑的普通波特兰水泥基材
料的替代品。本文介绍了使用碱活化技术或地质聚合法生产的混凝土块建造的生态友好型房屋原型的设计和建造。
该原型符合现行哥伦比亚抗震建筑法规(NSR-10)的要求,并包括与一层或两层建筑的抗震密闭砌体的材料性能、
设计和施工方法相关的标准。碱活化块由不同的前体(铝硅酸盐)获得,包括天然火山灰、磨碎的高炉矿渣、粉煤
灰、建筑和拆除废物(混凝土、陶瓷、砖和砂浆)和红粘土砖废物。碱活化块的物理机械特性允许它们根据哥伦
比亚技术标准NTC 4026(相当于ASTM C90)的结构规范进行分类。归因于碱活化砌块原材料的全球变暖潜能值
(GWP)或“碳足迹”低于(25.4-54.7%)参考砌块(普通硅酸盐水泥混凝土砌块)。这些结果证明了碱活化材料在
建造生态友好型房屋中的应用潜力。

关键词


碱活化材料;地质聚合物;混凝土块;砖;环保房屋;可持续建筑;废物回收

全文:

PDF


参考


[1]Robayo-Salazar, R.A.; Mejía-Arcila, J.M.;

Mejía de Gutiérrez, R. Eco-Efficient Alkali-Activated

Cement Based on Red Clay Brick Wastes Suitable for the

Manufacturing of Building Materials. J. Clean. Prod. 2017,

166, 242–252.

[2]Hassan, A.; Arif, M.; Shariq, M. Use of Geopolymer

Concrete for a Cleaner and Sustainable Environment— A

Review of Mechanical Properties and Microstructure. J. Clean.

Prod. 2019, 223, 704–728.

[3]Rizzuto, J.P.; Kamal, M.; Elsayad, H.; Bashandy, A.;

Etman, Z.; Aboel Roos, M.N.; Shaaban, I.G. Effect of SelfCuring Admixture on Concrete Properties in Hot Climate

Conditions. Constr. Build. Mater. 2020, 261, 119933.

[4]ACI Committee 318. Building Code Requirements

for Structural Concrete (ACI 318-08); American Concrete

Institute (ACI): Farmington Hills, MI, USA, 2008.

[5]Resolución No. 0472 de 2017, Reglamento Para

La Gestión Integral de Los Residuos Generados En Las

Actividades de Construcción y Demolición— RCD

(“Regulation for the Management of Wastes Generated in

Construction and Demolition Activities”); Ministerio del

Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2017.

[6]Swiss Centre for Life Cycle Inventories Ecoinvent

OpenLCA Database Version 3.6. Available online: https://

www.ecoinvent.org/ database.html

[7]De Moraes Pinheiro, S.M.; Font, A.; Soriano, L.;

Tashima, M.M.; Monzó, J.; Borrachero, M.V.; Payá, J. OliveStone Biomass Ash (OBA): An Alternative Alkaline Source for

the Blast Furnace Slag Activation. Constr. Build. Mater. 2018,

178, 327–338.

[8]Kamseu, E.; Beleuk à Moungam, L.M.; Cannio,

M.; Billong, N.; Chaysuwan, D.; Melo, U.C.; Leonelli, C.

Substitution of Sodium Silicate with Rice Husk Ash-NaOH

Solution in Metakaolin Based Geopolymer Cement Concerning

Reduction in Global Warming. J. Clean. Prod. 2017, 142,

3050–3060.

[9]Mejía, J.M.; Mejía de Gutiérrez, R.; Montes, C.

Rice Husk Ash and Spent Diatomaceous Earth as a Source of

Silica to Fabricate a Geopolymeric Binary Binder. J. Clean.

Prod. 2016, 118, 133–139.

[10]Puertas, F.; Torres-Carrasco, M. Use of Glass Waste

as an Activator in the Preparation of Alkali-Activated Slag.

Mechanical Strength and Paste Characterisation. Cem. Concr.

Res. 2014, 57, 95–104.

[11]Villaquirán-Caicedo, M.A.; Mejía de Gutiérrez,

R.; Sulekar, S.; Davis, C.; Nino, J.C. Thermal Properties

of Novel Binary Geopolymers Based on Metakaolin and

Alternative Silica Sources. Appl. Clay Sci. 2015, 118, 276–

282.

[12]Scrivener, K.L.; John, V.M.; Gartner, E.M. EcoEfficient Cements: Potential Economically Viable Solutions for

a Low-CO2 Cement-Based Materials Industry. Cem. Concr.

Res. 2018, 114, 2–26.


Refbacks

  • 当前没有refback。