碱活化矿渣(AAS)混凝土的力学性能和耐久性能
摘要
OPC占全球二氧化碳排放量的5%以上。此外,炉渣是一种工业副产品,如果不重新使用,就必须填埋。因此,许
多研究人员将其作为OPC的环保替代品而进行了研究。除了回收利用之外,AAS还为混凝土提供了有利的特性,
例如抗压强度的快速发展和对硫酸盐侵蚀的高抵抗力。AAS的一些潜在缺点包括高收缩率、短凝固时间和高碳化
率。使用磨碎的粒状高炉矿渣(GGBS)作为OPC的替代品,需要用高碱度化合物如氢氧化钠(NaOH)、硫酸钠
(Na2SO3)、碳酸钠(Na2CO3)或这些化合物的组合(如NaOH和硫酸钠),碱活化的机理尚不完全清楚,有待进一
步研究。本文概述了AAS混凝土的特性、优点和潜在缺点。
关键词
全文:
PDF参考
[1]Fernandez-Jimenez, A.; Puertas, F. The alkali–silica
reaction in alkali-activated granulated slag mortars with
reactive aggregate. Cem. Concr. Res. 2002, 32, 1019–1024.
[2]Wang, P.M.; Liu, X.P. Effect of temperature on the
hydration process and strength development in blends of
Portland cement and activated coal gangue or fly ash. J.
Zhejiang Univ. Sci. A 2011, 12, 162–170.
[3]Collins, F.; Sanjayan, J.G. Effect of pore size
distribution on drying shrinkage of alkali-activated slag
concrete.Cem. Concr. Res. 2000, 30, 1401–1406.
[4]Zhu, X.; Tang, D.; Yang, K.; Zhang, Z.; Li, Q.; Pan,
Q.; Yang, C. Effect of Ca(OH)2 on shrinkage characteristics
and microstructures of alkali-activated slag concrete. Constr.
Build. Mater. 2018, 17, 467–482.
[5]Shimomura, T.; Maekawa, K. Analysis of the drying
shrinkage behavior of concrete based on the micropore
structure of concrete using a micromechanical model. Mag.
Concr. Res. 1997, 49, 303–322.
[6]Ye, H.; Radlinska, A. Shrinkage mechanisms of alkaliactivated slag. Cem. Concr. Res. 2016, 88, 126–135.
[7]Bilek, V.; Kalina, L.; Novotny, R.; Tkacz, J.; Parizek, L.
Some Issues of Shrinkage-Reducing Admixtures Application
in Alkali-Activated Slag Systems. Materials 2016, 9, 462.
[8]Mohamed, O. Durability and Compressive Strength of
High Cement Replacement Ratio Self-Consolidating Concrete.
Buildings 2018, 8, 153.
[9]Komljenovic, M.; Bascarevic, Z.; Marjanovic, N.;
Nikolic, V. External sulfate attack on alkali-activated slag.
Constr. Build. Mater. 2013, 49, 31–39.
Refbacks
- 当前没有refback。