迈向可持续化学工程:过程系统工程的作用
摘要
化。为了促进可持续发展性,化学工程需要通过开发化学产品和工艺来解决这一悖论,以满足当前和未来几代人的
需求。由于跨空间,时间,流量或学科的影响发生变化,并且超出了自然界提供商品和服务的能力,化学工程的意
外危害通常出现在该学科的传统系统边界之外。作为化学工程的一个分支学科,过程系统工程(PSE)最适合确保化
学工程对可持续发展做出积极的贡献。本文回顾了 PSE在探索可持续化学工程中的作用。它的关注指标、过程设计、
产品设计、过程动态和可持续性控制方面的进展。致力于这一个探索的努力已经扩展了 PSE的边界,并考虑到过程、
产品及其生命周期的经济、环境和社会方面。未来的努力需要考虑到生态系统在支持工业活动方面的作用,以及人
类行为和市场对化学产品环境影响的反效果。化学工程科学的还原论与过程系统工程的整体主义之间需要紧密的相
互作用,以及工程范式的转变,从想要支配自然到从自然界学习并尊重其极限。
关键词
全文:
PDF参考
[1] Harris R. 2017. Rigor Mortis: How Sloppy Science
Creates Worthless Cures, Crushes Hope, and Wastes Billions.
New York: Basic Books
[2] Ioannidis JP. 2005. Why most published research
findings are false. PLOS Med. 2:e124
[3] Garrison KE, Tang D, Schmeichel BJ. 2016.
Embodying power: a preregistered replication and extension of
the power pose effect. Soc. Psychol. Personal. Sci. 7:623–30
[4] Klein RA, Ratliff KA, Vianello M, Adams R, Bahník
Š, et al. 2014. Investigating variation in replicability: a “many
labs” replication project. Soc. Psychol. 45:142–52
[5] Natl. Renew. Energy Lab. 2018. Photovoltaic
Research: Device Performance. Golden, CO: Natl. Renew.
Energy Lab. https://www.nrel.gov/pv/device-performance.html
[6] Cohen SM. 2012. Postsynthetic methods for the
functionalization of metal-organic frameworks. Chem. Rev.
112:970–1000
[7] Keskin S, van Heest TM, Sholl DS. 2010. Can metalorganic framework materials play a useful role in large-scale
carbon dioxide separations? ChemSusChem 3:879–91
[8] Burtch NC, Jasuja H, Walton KS. 2014. Water
stability and adsorption in metal-organic frameworks. Chem.
Rev. 114:10575–612 20. Groom CR, Allen FH. 2014. The
Cambridge Structural Database in retrospect and prospect.
Angew. Chem. Int. Ed. 53:662–71
[9] Zhang B, Wang ZM, Kurmoo M, Gao S, Inoue
K, Kobayashi H. 2007. Guest-induced chirality in the
ferrimagnetic nanoporous diamond framework Mn3(HCOO)6.
Adv. Funct. Mater. 17:577–84
[10] Zhang C-Z,Mao H-Y,Wang Y-L, Zhang H-Y,
Tao J-C. 2007. Syntheses of two new hybrid metal-organic
polymers using flexible aliphatic dicarboxylates and pyrazine:
crystal structures and magnetic studies. J. Phys. Chem. Solids
68:236–42
[11] Volkringer C, Loiseau T, Férey G, Morais CM,
Taulelle F, et al. 2007. Synthesis, crystal structure and 71Ga
solid state NMR of a MOF-type gallium trimesate (MIL-96)
with μ3-oxo bridged trinuclear units and a hexagonal 18-ring
network. Microporous Mesoporous Mater. 105:111–17
[12] Chang W-M, Cheng M-Y, Liao Y-C, Chang M-C,
Wang S-L. 2007. Template effect of chain-type polyamines on
pore augmentation: five open-framework zinc phosphates with
16-ring channels. Chem. Mater. 19:6114–19
[13] Schull TL, Henley L, Deschamps JR, Butcher
RJ, Maher DP, et al. 2007. Organometallic supramolecular
mixed-valence cobalt(I)/cobalt(II) aquo complexes
stabilized with the water-soluble phosphine ligand p-TppTp
(p-triphenylphosphine triphosphonic acid). Organometallics
26:2272–76
[14] Kiskin MA, Aleksandrov GG, Bogomyakov AS,
Novotortsev VM, Eremenko IL. 2008. Coordination polymers of
cobalt(II) with pyrimidine and pyrazine: syntheses, structures
and magnetic properties. Inorg. Chem. Commun. 11:1015–18
[15] He J, Yang C, Xu Z, Zeller M, Hunter AD, Lin
J. 2009. Building thiol and metal-thiolate functions into
coordination nets: clues from a simple molecule. J. Solid State
Chem. 182:1821–26
[16] Konno T, Yoshinari N, Taguchi M, IgashiraKamiyama A. 2009. Drastic change in dimensional structures
of D-penicillaminato (AuI 2PtI 2ZnII)n coordination polymers
by moderate change in solution pH. Chem. Lett. 38:526–27
[17] Abrahams BF, Grannas MJ, Hudson TA, Robson R.
2010. A simple lithium(I) salt with a microporous structure and
its gas sorption properties. Angew.
Refbacks
- 当前没有refback。