首页出版说明中文期刊中文图书环宇英文官网付款页面

印度查谟和克什米尔斯利那加市部分旅游景点颗粒物 和二氧化碳浓度的空间插值

法鲁 克·1, 所罗 门·1, 伊姆 提亚1, 纳吉 纳·2, 纳亚 尔·3, 阿赫 塔尔4, 5
1、印度查谟和克什米尔夏利马尔克什米尔农业科技大学环境科学系
2、印度克什米尔夏利马尔农业科技大学农业统计系
3、土壤科学部
4、印度克什米尔夏利马尔农业科技大学昆虫学系
5、

摘要


本次调查旨在监测和制作大气颗粒物(PM1、PM2.5、PM4)浓度月空间变异性专题图(PM10 和 TSP)和一
些选定旅游景点(即 Shalimar 花园、Chesmashahi 植物园、Harwan 花园、Nishat 花园、Naseem Bagh、Lal Chowk 和
Sher-e-Kashmir 农业科学大学)的二氧化碳 (CO2) 和克什米尔技术 (SKUAST-K) 克什米尔山谷斯利那加市 Shalimar
校区,于 2019 年 11 月至 2020 年 4 月使用量子地理信息系统 (QGIS) 中的反距离加权 (IDW) 插值技术。考虑到斯
利那加市是一个成长中的城市人口、建筑、车辆等方面,查谟和克什米尔邦污染控制委员会在一份关于管理斯利那
加市空气质量的报告中确定了该市的污染源,其估计来源比例如下:车辆排放(65-75% )、坏路产生的灰尘 (10-15
%)、生物质和垃圾燃烧 (10-20 %)、建筑和拆除排放 (5-8 %)、小型工业活动 (7-8 %) 和其他来源 (3 % )。因此,斯利
那加市的这些来源使空气质量恶化。因此,本研究试图揭示颗粒物和CO2的月变化和空间插值。每个月使用 Aerocet
831-Aerosol Mass Monitor 和 CDM 901-CO2 Monitor 监测早上、下午和晚上的环境中颗粒物和 CO2 浓度,重复采样
3 次。由数据可知,各监测点各污染物早、午、晚平均浓度分别为: PM1(67.07、55.87、57.62 µg/m3
); PM2.5(129.49、
95.52、112.50 µg/m3
); PM4(170.44、121.09、161.81 µg/m3
); PM10 (315.49, 203.09, 383.97 µg/m3
); TSP (376.43,
240.49,496.55 µg/m3
);和CO2(595.33、557.94、601.07ppm)表明斯利那加市早晚污染物浓度最高。此外,数据和
IDW 图清楚地表明,大多数监测点之间监测的污染物的月平均值和平均 6 个月浓度存在统计显着性 (p ≤ 0.05) 变
化。这告诉我们,颗粒物和二氧化碳的浓度每月都会随着斯利那加市一个地点到另一个地点的距离而变化。大多数
地点的月平均值在大多数参数之间呈非显着正相关,但在 PM1、PM2.5 和 PM4 之间呈显着强正相关,p ≤ 0.01。此外,
PM4 和 PM10 以及 PM10 和 TSP 之间存在显着强正相关(p ≤ 0.05)。因此,表明所有监测参数同时增加或减少。因此
得出的结论是,斯利那加市的空气质量差随着距离的变化而变化,如数据和 IDW 地图关于监测点和监测的污染物所
描绘的那样。因此,可以了解城市上空的污染物。

关键词


二氧化碳;相关性;反距离;颗粒物;污染物;斯利那加市;权重图

全文:

PDF


参考


[1] Institute, Health Effect. State of Global Air 2018.

Special Report.; 2018. https://www.stateofglobalair.org/sites/

default/files/soga-2018-report.pdf

[2] Lee KK, Miller MR, Shah ASV. Air pollution and

stroke. J Stroke. 2018;20(1). doi:10.5853/jos.2017.02894

[3] WHO. Ambient (outdoor) air pollution. Published

2018. Accessed April 10, 2021. https://www.who.int/newsroom/fact-sheets/detail/ambient-(outdoor)-air-qualityandhealth

[4] Kulshrestha UC. PM1 is More Important than PM2.5

for Human Health Protection. Curr World Environ. 2018;13(1).

doi:10.12944/cwe.13.1.01

[5] Hedley C, Saggar S, Tate K. Procedure for

fast simultaneous analysis of the greenhouse gases:

Methane, carbon dioxide, and nitrous oxide in air

samples. Commun Soil Sci Plant Anal. 2006;37(11-12).

doi:10.1080/00103620600709928

[6] Anonymous. Revised Action Plan for Air Quality

Management in Srinagar city. In: Revised Action Plan Control

of Air Pollution in Non-Attainment Cities Jammu and Srinagar.

; 2018:28-44. http://jkspcb.nic.in/WriteReadData/userfiles/

file/Ambient Air Quality/Action Plan on Control of Air

Pollution in Non Attainment Cities.pdf

[7] Nikhil ST. Study on the effect of vehicular pollution

on the ambient concentrations of particulate matter and carbon

dioxide in Srinagar city. Published online 2020. doi:Available

in SKUAST-K Library, Shalimar

[8] Nusret D, Dug S. Applying the Inverse Distance

Weighting and Kriging methods of the spatial interpolation

on the mapping the annual precipitation in Bosnia and

Herzegovina. In: IEMSs 2012 - Managing Resources of a

Limited Planet: Proceedings of the 6th Biennial Meeting of the

International Environmental Modelling and Software Society. ;

2012.

[9] Fontes T, Barros N. Interpolation of air quality

monitoring data in an urban sensitive area: the Oporto/Asprela

case. Edições UnivFernando Pessoa. 2010;7:6-18. https://

bdigital.ufp.pt/handle/10284/2334

[10] Kumar Jha D, Sabesan M, Das A, Vinithkumar N V,

Kirubagaran R. Evaluation of Interpolation Technique for Air

Quality Parameters in Port Blair, India. Univers J Environ Res

Technol.2011;1(3).

[11] Li L, Losser T, Yorke C, Piltner R. Fast inverse

distance weighting-based spatiotemporal interpolation: A webbased application of interpolating daily fine particulate matter

PM2:5in the contiguous U.S. using parallel programming

and k-d tree. Int J Environ Res Public Health. 2014;11(9).

doi:10.3390/ijerph110909101

[12] Kumar A, Krishna A. Aerosol concentration over

Ranchi urban area and South Karanpura Coalfield region,

Jharkhand, India-A comparative geospatial appraisal. J Ind

Geophys Union. 2017;21(5):431-440.

[13] Schloeder CA, Zimmerman NE, Jacobs MJ.

Comparison of Methods for Interpolating Soil Properties Using

Limited Data. Soil Sci Soc Am J. 2001;65(2). doi:10.2136/

sssaj2001.652470x

[14] Arumugam T, Kunhikannan S, Radhakrishnan

P. Assessment of fluoride hazard in groundwater of Palghat

District, Kerala: A GIS approach. Int J Environ Pollut.

2019;66(1-3). doi:10.1504/IJEP.2019.104533

[15] Hakim ZQ, Beig G, Reka S, Romshoo SA, Rashid

I. Winter Burst of Pristine Kashmir Valley Air. Sci Rep.

2018;8(1). doi:10.1038/s41598-018-20601-z

[16] Met One Instruments. Fine Dust Meter Met One

AEROCET 831. Website. doi:AEROCET 831

[17] Met One Instruments. Comet Software. Website.

Published 2019. Accessed October 24, 2019. https://metone.

com/products/comet/

[18] Remer LA, Kaufman YJ, Tanré D, et al. The

MODIS aerosol algorithm, products, and validation. J Atmos

Sci. 2005;62(4). doi:10.1175/JAS3385.1

[19] Baschant D, Stahl H. Temperature resistant IR-gas

sensor for CO2 and H2O. In:Proceedings of IEEE Sensors. Vol

1. ; 2004.

[20] Hodgkinson J, Smith R, Ho WO, Saffell JR, Tatam

RP. Non-dispersive infra-red (NDIR) measurement of

carbon dioxide at 4.2 μm in a compact and optically efficient

sensor. Sensors Actuators, B Chem. 2013;186. doi:10.1016/

j.snb.2013.06.006

[21] Rave Innovations. Realtime Portable CO2 MonitorCDM 901. Website. Published 2019. Accessed October 25,

2019. http://www.erave.in/products/index.html

[22] Lu GY, Wong DW. An adaptive inversedistance

weighting spatial interpolation technique. Comput Geosci.

2008;34(9). doi:10.1016/j.cageo.2007.07.010

[23] McCoy J, Johnston K, Kopp, Borup B, Willison J,

Payne P. ArcGIS 9. 1st ed. ESRI; 2001.

[24] Salih IM, Pettersson HBL, Sivertun A, Lund E.

Spatial correlation between radon (222-Rn) in groundwater

and bedrock uranium (238-U): GIS and geostatistical analyses.

J Spat Hydrol. 2002;2(2).

[25] Sheikh M, Najar IA. Preliminary Study on Air Quality

of Srinagar, (J&K), India. J Environ Sci Stud. 2018;1(1).

doi:10.20849/jess.v1i1.421

[26] Lau J, Hung WT, Cheung CS. Interpretation of air

quality in relation to monitoring station’s surroundings. Atmos

Environ. 2009;43(4). doi:10.1016/j.atmosenv.2008.11.008

[27] Li A, Chen C, Chen J, Lei P. Environmental

investigation of pollutants in coal mine operation and waste

dump area monitored in Ordos Region, China. RSC Adv.

2021;11(17). doi:10.1039/d0ra10586d

[28] Awasthi A, Agarwal R, Mittal SK, Singh N, Singh K,

Gupta PK. Study of size and mass distribution of particulate

matter due to crop residue burning with seasonal variation

in rural area of Punjab, India. J Environ Monit.2011;13(4).

doi:10.1039/c1em10019j

[29] Jayamurugan R, Kumaravel B, Palanivelraja S,

Chockalingam MP. Influence of Temperature, Relative

Humidity and Seasonal Variability on Ambient Air Quality

in a Coastal Urban Area. Int J Atmos Sci. 2013;2013.

doi:10.1155/2013/264046

[30] Kale US, Sawant P. Evaluation of Impact of

Particulate Matter on Traffic Personnel and at Traffic Junctions.

J Environ Heal Sci. 2016;2(6):1-9. doi:10.15436/2378-

6841.16.1037

[31] Pan S, Du S, Wang X, et al. Analysis and

interpretation of the particulate matter (PM10 and PM2.5)

concentrations at the subway stations in Beijing, China. Sustain

Cities Soc. 2019;45. doi:10.1016/j.scs.2018.11.020

[32] Tiwari S, Chate DM, Srivastava MK, et al. Statistical

evaluation of PM10 and distribution of PM1, PM2.5, and PM10

in ambient air due to extreme fireworks episodes (Deepawali

festivals) in megacity Delhi. Nat Hazards.2012;61(2).

doi:10.1007/s11069-011-9931-4

[33] Chakraborty T, Beig G, Dentener FJ, Wild O.

Atmospheric transport of ozone between Southern and

Eastern Asia. Sci Total Environ. 2015;523. doi:10.1016/

j.scitotenv.2015.03.066




DOI: http://dx.doi.org/10.12361/2661-3565-04-07-105361

Refbacks

  • 当前没有refback。