首页出版说明中文期刊中文图书环宇英文官网付款页面

自然环境中土壤修复技术的可行性研究

Mithun Chakrabartty, Gazi Mohammad Harun-Or-Rashid
拉杰沙伊工程技术大学

摘要


当今世界依赖于工业。没有工业,一个国家的经济发展就无从谈起。世界范围内工业的快速增长提升了人
类的生活水平。但是这种工业化也带来了一些环境污染的影响。工业废物处理、过量使用化肥以及其他人类活动造
成了土壤污染,这是当今亟待解决的问题。保护环境和人类免受土壤污染的不良影响是一个重大问题。本文重点介
绍了几种原位和异位去除土壤中污染物(碳氢化合物,如石油和燃料残渣、重金属、农药、挥发物或半挥发物)的
修复技术及其特性和应用。本研究试图揭示土壤修复技术的真实情况。这种修复技术分为物理、化学、生物、热以
及组合技术。为了选择最合适的技术,需要考虑各种因素。此外,本研究还讨论了各种修复技术的优缺点。据观察,
任何单一修复技术的效率都不足以完全去除土壤中的所有污染物,而修复技术的组合可以带来更好的土壤净化效率。

关键词


土壤污染物;修复技术;原位;技术选择;技术组合

全文:

PDF


参考


[1] Acar, Y. B., Alshawabkeh, A., 1993. Principle of

electrokinetic remediation. Journal of Environmental Science

and Technology 27 (13), 2638–2647.

[2] Anderson, A., Mitchell, P., 2003. Treatment of

mercury contaminated soil, mine waste and sludge using silica

micro- encapsulation. TMS Annual Meeting, Extraction and

Processing Division, Mar 2–6 2003, San Diego, CA, pp.

265– 274.

[3] Barnes, D. L., 2003. Estimation of operation time

for soil vapor extraction systems. Journal of Environmental

Engineering 129 (9), 873–878.

[4] Bronze, O. E. New developments in hazardous

materials research. Nova Science Publishers, N. Y., 2006.

Environmental Protection Agency (EPA). Contaminants.

Retrieved November 18, 2009, from Clean-Up Information:

http://www.clu-in.org/contaminantfocus/

[5] Cascade, A. Deeper Look at Permeable Reactive

Barriers. Available online: https://www.cascade.env.com/

resources/blogs/archive/a-deeper-look-at-permeable

reactive-barriers/ (accessed on 4 September 2020).

[6] Conway R. A., Cordle S., Mercer J. W., Miller

D. W., Rao P. S. C. Overview. In: Ground Water and Soil

Contamination Remediation: Toward Compatible Science,

Policy, and Public Perception. Report on Colloquium Sponsored

by the Water Science and Technology Board. Colloquium 5 of

a Series, National Academy Press, Washington, D.C., 1990, p.

1-16.

[7] Druss, D. L., 2003. Guidelines for Design and

Installation of Soil–Cement Stabilization, Geotechnical

Special Publication, Feb 10–12 2003, New Orleans, LA,

Number 120, pp. 527–539.

[8] Dunea D, Iordache S, Pohoata A, Frasin LBN (2014)

Investigation and selection of remediation technologies for

petroleum-contaminated soils using a decision support system.

Water Air Soil Pollut 225: 1–18.

[9] Emerging Technologies for the Remediation of Metals

in Soils. Electrokinetics. Technology Overview. Interstate

Technology and Regulatory Cooperation Work Group.

December, 1997, 19

[10] FRTR, (1999). Soil flushing. Federal Remediation

Technologies Roundtables, USEPA, Washington, DC.

[11] F. I. Khan, T. Husain, R. Hejazi. (2004). An

overview and analysis of site remediationtechnologies. Journal

of Environmental Management. Vol. 71, 95-122.

[12] Hejazi, R. F., 2002. Oily Sludge Degradation Study

Under Arid Conditions Using a Combination of Landfarm and

Bioreactor Technologies. PhD thesis, Faculty of Engineering

and Applied Science, Memorial University of Newfoundland, St

John’s, Canada.

[13] K. T. Jarvinen, E. S. Melin, and J. A. Puhakka.

(1994). High rate bioremediation of chlorophenol contaminated

groundwater at low temperatures. Environmental Science &

Technology. Vol. 28, 2387-2392.

[14] K. W. Tsang, P. R. Dugan, R. M. Pfister. (1994).

Mobilization of Bi, Cd, Pb, Th, and U ions from contaminated

soil and the influence of bacteria on the process. In:

Emerging Technologies in Hazardous Waste Management IV.

Washington, DC: American Chemical Society.

[15] Lin, H. K., Man, X. D., Walsh, D. E., 2001. Lead

removal via soil washing and leaching. JOM 53 (12), 22–25.

[16] Liu Y, Zeng G, Zhong H, Wang Z, Liu Z, Cheng

M, Liu G, Yang X, Liu S (2017). Effect of rhamnolipid

solubilization on hexadecane bioavailability: enhancement or

reduction? JHazard Mater 322: 394–401.

[17] Meagher, R. B. (2000). “Phytoremediation of toxic

elemental and organic pollutants.” Curr. Opin. Plant Biol., 3,

153–162.

[18] Meuser H (2013) Soil remediation and rehabilitation:

treatment of contaminated and disturbed land. Springer,

Dordrecht.

[19] Mihopoulos F. I. Khan et al., 2004. An overview

and analysis of site remediation technologies. Journal of

Environmental Management 71 (2004) 95–122.

[20] Mitchell, E. D. and Thomas, W. E. (2012). In- situ

thermal remediation. Technical Guidance Document, Indiana

Department of Environmental Management: 1–9.

[21] Mohammad, I. L., Zhen, L., Peter, J. S. and Xiao,

Y. (2008). Phytoremediation of heavy metals polluted soil

and water: progresses and perspectives. Journal of Zhejiang

University, 9 (3): 210–220.

[22] Mulligan, C. N., Yong, R. N., and Gibbs, B. F. (2001).

“Remediation technologies for metal-contaminated soils and

groundwater: an evaluation.” Eng. Geol. (Amsterdam), 60,

193–207.

[23] O. Schacht, K. Ajibo. (2002). Soil Bioremediation:

In-Situ vs. Ex-situ. (Costs, Benefits, and Effects). WSP and

Göteborg Energi.

[24] Pavel, L.; Gavrilescu, M. (2008). Overview of ex situ

decontamination techniques for soil cleanup. Environ. Eng.

Manag. J. 7, 815–834.

[25] Paulo, J. C., Favas, J. P., Mayank, V., Rohan, D. and

Manoj, S. R. (2014). Phytoremediation of soil contaminated

with metals and metalloids at mining areas: Potential of Native

Flora. INTECH Open Science: 486–515. http://dx.doi.

org/10.5772/57469.

[26] Raphl, S. B., John, C. L. and Gorm, H. (2006).

Application of thermal remdiation techniques for in situ

treatment of contaminated soil and water. NATO Advanced

Research Workshop, Athen, Greece.

[27] Raymond, A. W. and Felix, O. (2011). Heavy metals

in contaminated soil: A review of sources, chemistry, risk and

best available strategies for remediation. International Scholar

Research. http://dx.org 10.5402/ 2011 /4 02647.

[28] Reddy KR, Yaghoubi P, Yukselen-Aksoy Y (2015).

Effects of biochar amendment on geotechnical properties of

landfill cover soil. Waste Manag Res 33 (6): 524–532.

[29] Suthersan, S. S. (1999). In situ air sparging.

Remediation engineering, CRC Press.

[30] USEPA (1995). How to evaluate alternative clean up

technologies for underground storage tank sites. Office of Solid

Waste and Emergency Response. EPA 510 – B – 95–007,

Washington, DC.

[31] USEPA (1996). In situ soil vapour - extraction.

Office of Solid Waste and Emergency Response, Washington,

DC.

[32] USEPA (1998). Soil vapour extraction. Office of the

underground storage tank, EPA 510 – B – 95–007.

[33] USEPA (2006). In Situ Treatment Technologies for

Contaminated Soil, Solid Waste and Emergency Response.

EPA 542/F- 06/013.

[34] USEPA (2012). A Citizen’s Guide to Thermal

Desorption Office of Solid Waste and Emergency ResponseEPA 542-F- 12-020. www.epa.gov/superfund/sites. Accessed

2 June 2018.




DOI: http://dx.doi.org/10.12361/2661-3565-04-08-105363

Refbacks

  • 当前没有refback。