首页出版说明中文期刊中文图书环宇英文官网付款页面

苔藓作为不同空气质量环境下空气质量监测的生物指示器

Nurulshyha Md Yatim, Nur Azman
吉隆坡大学医学科技学院环境卫生科

摘要


由于与其他科学方法相比所具备的优势,使用生物指示器的空气质量监测目前正在推广并经常被用于研究
中。使用生物指示器作为空气质量的生物监测的优点在于它仍然是最便宜、最可利用和最简单的可靠大气监测矩阵。
这项研究是为了确定苔藓在暴露于不同的空气质量环境下作为空气质量监测的生物指示器的能力。本研究选择了四
种环境条件:城市地区、保护区森林、起居室和吸烟室。使用白发藓或荷兰苔藓作为监测空气质量的生物指示器。
在每个研究地点都放置了网格状的苔藓容器,持续时间为两个星期。每周通过检查苔藓的颜色变化进行物理观察。
苔藓的存活率是通过计算每个容器中苔藓生长的网格数量来确定的。通过对苔藓反应的物理观察和对不同空气质量
环境的存活率来记录数据。使用 SPSS对数据进行了分析。苔藓对不同的空气质量环境有相应的反应。苔藓在高度污
染的环境中,在吸烟室里,主要的反应是由新鲜的绿色转变为褐色。总之,因为苔藓受周围环境的影响而改变其物
理外观和生长速度,它可以作为空气质量监测的生物指示器来确定空气质量状况。

关键词


空气质量监测;生物指示器;苔藓;城市;吸烟者

全文:

PDF


参考


1. Marć, M., Tobiszewski, M., Zabiegała, B., Guardia,

M. de la, & Namieśnik, J., Current air quality analytics and

monitoring: A review. Analytica Chimica Acta, 853(1), 2015,

pp. 116–126.

2. Ares, A., Aboal, J. R., Carballeira, A., Giordano, S.,

Adamo, P., & Fernández, J. A., Moss bag biomonitoring: A

methodological review. Science of the Total Environment, 432,

2012, pp. 143–158.

3. AL-Alam, J., Chbani, A., Faljoun, Z., & Millet, M.

(2019a). The use of vegetation, bees, and snails as important

tools for the biomonitoring of atmospheric pollution— a review.

Environmental Science and Pollution Research, 26(10),

9391–9408.

4. Bargagli, R. (2016a). Moss and lichen biomonitoring

of atmospheric mercury: A review. Science of the Total

Environment, 572, 216–231. https://doi.org/10.1016/

j.scitotenv.2016.07.202.

5. Cao, T., Wang, M., An, L., Yu, Y., Lou, Y., Guo,

S., … Zhu, Z. (2009). Air quality for metals and sulfur in

Shanghai, China, determined with moss bags. Environmental

Pollution, 157(4), 1270–1278. https://doi.org/10.1016/

j.envpol.2008.11.051

6. Jiang, Y., Fan, M., Hu, R., Zhao, J., & Wu, Y. (2018).

Mosses are better than leaves of vascular plants in monitoring

atmospheric heavy metal pollution in urban areas. International

Journal of Environmental Research and Public Health, 15(6).

https://doi.org/10.3390/ijerph15061105

7. Leh, O. L. H., Ahmad, S., Aiyub, K., Jani, Y. M., &

Hwa, T. K. (2012). Urban air environmental health indicators

for Kuala Lumpur city. Sains Malaysiana, 41(2), 179–191.

8. L Ling, O. H., Ting, K. H., & J, Y. M. (2010). Urban

Growth and Air Quality in Kuala Lumpur City, Malaysia

Environment Asia Available online at www.tshe.org/EA

Environment Asia 3(2) (2010) 123-128. Retrieved from www.

tshe.org/EA

9. Norela, S., Saidah, M. S., Maimon, A., & Ismail, B.

S. (2010). PM10 Composition of the Air Quality at the Bukit

Nanas Forest Reserve of Kuala Lumpur, Malaysia. Research

Journal of Environmental Sciences. https://doi.org/10.3923/

rjes.2010.392.399

10. Kim, J. Y., Chu, C. H., & Shin, S. M. (2014). ISSAQ:

An integrated sensing system for real-time indoor air quality

monitoring. IEEE Sensors Journal, 14(12), 4230–4244.

https://doi.org/10.1109/JSEN.2014.2359832

11. Nurulshyha, M.Y. & Huzaifah, M. (2019). Moss as

Bio-indicator for Air Quality Monitoring. International Journal

of Engineering and Advanced Technology (IJEAT), 9(1), 4758-

62.

12. McCauley, A., Jones, C., & Jacobsen, J., Plant

Nutrient Functions and Deficiency and Toxicity Symptoms.

Nutrient Management Module, 2011.

13. Pochodz, A., & Dymu, Ą. C. Z. (2018). Mosses

As Biomonitor of Air Pollution with Analytes Originating

from Tobacco Smoke Mosses as biomonitors of environment

pollution with selected analytes, 23, 127–136. https://doi.

org/10.1515/cdem-018-0008

14. Urošević, M. A., Vuković, G., Jovanović, P., Vujičić,

M., Sabovljević, A., Sabovljević, M., & Tomašević, M. (2017).

Urban background of air pollution: Evaluation through moss

bag biomonitoring of trace elements in Botanical garden.

Urban Forestry and Urban Greening, 25, 1–10. https://doi.

org/10.1016/j.ufug.2017.04.016




DOI: http://dx.doi.org/10.12361/2661-3565-04-10-110122

Refbacks

  • 当前没有refback。