首页出版说明中文期刊中文图书环宇英文官网付款页面

人类抗病毒保护的新概念:都是关于RNA的(综述)

贾夫 达特
科学院免疫学和人类基因组研究所

摘要


对多细胞生物中的抗病毒保护机制(包括原生动物和RNA干扰)的比较分析揭示了它们的相似性,并提供了对适应性免疫的基本理解。本文综述了RNA引导基因调控在人类抗病毒保护中的最新研究及其重要性。此外,还考虑了中和抗体和干扰素系统在病毒侵袭中的作用。干扰素系统是抑制人类病毒感染的另一种机制,它将细胞转变为“警报”模式,试图防止进一步的传染。人类中枢免疫系统的首要任务是保持完整性并防止外来生物入侵。在这篇综述中,提出了一个新概念:所有生物体的抗病毒保护都可以通过细胞内RNA引导机制实现。一种简单有效的病毒防御方法是将病毒DNA的一部分(间隔区)并入宿主染色体。在再感染后,这个间隔区的RNA转录产物被产生,以指导核酸酶破坏病毒基因组。这是一个具有完整染色体的每个细胞潜在拥有实时适应性免疫的例子,表明抗病毒免疫不仅由中和抗体和记忆B细胞和T细胞介导,还由病毒感染后恢复的个体DNA中的特定间隔物介导。

关键词


RNA‑I;CRISPR‑Cas;抗病毒免疫;干扰素;COVID‑19;SARS‑CoV‑2间隔物

全文:

PDF


参考


[1]Reimer‑MichalskiEMandConrathU:Innateimmunememoryinplants.SeminImmunol28:319‑327,2016.

[2]NeteaMG,QuintinJandvanderMeerJW:Trainedimmunity:Amemoryforinnatehostdefense.CellHostMicrobe9:355‑361,2011.

[3]RosingMT:13C‑Depletedcarbonmicroparticlesin>3700‑Masea‑floorsedimentaryrocksfromwestgreenland.Science283:[4]674‑676,1999.DoddMS,PapineauD,GrenneT,SlackJF,RittnerM,PirajnoF,O'NeilJandLittleCT:EvidenceforearlylifeinEarth'soldesthydrothermalventprecipitates.Nature543:60‑64,2017.[5]KnollAH,JavauxEJ,HewittDandCohenP:Eukaryoticorgan‑ismsinProterozoicoceans.PhilosTransRSocLondBBiolSci361:1023‑1038,2006.[6]FedonkinMA:TheoriginoftheMetazoainthelightoftheProterozoicfossilrecord.PaleontolRes7:9‑41,2003.

[7]BarrangouR:TherolesofCRISPR‑Cassystemsinadaptiveimmunityandbeyond.CurrOpinImmunol32:36‑41,2015.[8]KooninEVandMakarovaKS:MobilegeneticelementsandevolutionofCRISPR‑Cassystems:Allthewaythereandback.GenomeBiolEvol9:2812‑2825,2017.[9]FireA,XuS,MontgomeryMK,KostasSA,DriverSEandMelloCC:Potentandspecificgeneticinterferencebydouble‑strandedRNAinCaenorhabditiselegans.Nature391:806‑811,1998.[10]ElbashirSM,HarborthJ,LendeckelW,YalcinA,WeberKandTuschlT:Duplexesof21‑nucleotideRNAsmediateRNAinter‑ferenceinculturedmammaliancells.Nature411:494‑498,2001.[11]HanH:RNAinterferencetoknockdowngeneexpression.MethodsMolBiol1706:293‑302,2018.[12]AbdelrahimM,SafeS,BakerCandAbudayyehA:RNAiandcancer:Implicationsandapplications.JRNAiGeneSilencing2:136‑145,2006.[13]GhildiyalMandZamorePD:SmallsilencingRNAs:Anexpandinguniverse.NatRevGenet10:94‑108,2009.[14]MaillardPV,CiaudoC,MarchaisA,LiY,JayF,DingSWandVoinnetO:AntiviralRNAinterferenceinmammaliancells.Science342:235‑238,2013.[15]HabibiLandSalmaniH:PivotalimpactsofretrotransposonbasedinvasiveRNAsonevolution.FrontMicrobiol8:1957,2017.[16]WeiW,MorrishTA,AlischRSandMoranJV:AtransientassayrevealsthatculturedhumancellscanaccommodatemultipleLINE‑1retrotranspositionevents.AnalBiochem284:435‑438,2004.[17]LanderES,LintonLM,BirrenB,NusbaumC,ZodyMC,BaldwinJ,DevonK,DewarK,DoyleM,FitzHughW,etal:Initialsequencingandanalysisofthehumangenome.Nature409:860‑921,2001.[18]WickerT,SabotF,Hua‑VanA,BennetzenJL,CapyP,ChalhoubB,FlavellA,LeroyP,MorganteM,PanaudO,etal:Aunifiedclas‑sificationsystemforeukaryotictransposableelements.NatRevGenet8:973‑982,2007.[19]JavdatMandTamaraA:RNAinterference:Antiviraldefensemechanismandimmunememory.AdvApplPhysiol5:24‑29,2020.[20]ZhangL,RichardsA,BarrasaMI,HughesSH,YoungRAandJaenischR:Reverse‑transcribedSARS‑CoV‑2RNAcanintegrateintothegenomeofculturedhumancellsandcanbeexpressedinpatient‑derivedtissues.ProcNatlAcadSciUSA118:[21]Bitkoe2105968118,2021.VandBarikS:Phenotypicsilencingofcytoplasmicgenesusingsequence‑specificdouble‑strandedshortinterferingRNAanditsapplicationinthereversegeneticsofwildtypenegative‑strandRNAviruses.BMCMicrobiol1:34,2001.

[22]CoburnGAandCullenBR:Potentandspecificinhibitionofhumanimmunodeficiencyvirustype1replicationbyRNAinter‑ference.JVirol76:9225‑9231,2002.[23]McCaffreyAP,NakaiH,PandeyK,HuangZ,SalazarFH,XuH,WielandSF,MarionPLandKayMA:InhibitionofhepatitisBvirusinmicebyRNAinterference.NatBiotechnol21:639‑644,2003.[24]YokotaT,SakamotoN,EnomotoN,TanabeY,MiyagishiM,MaekawaS,YiL,KurosakiM,TairaK,WatanabeMandMizusawaH:InhibitionofintracellularhepatitisCvirusrepli‑cationbysyntheticandvector‑derivedsmallinterferingRNAs.EMBORep4:602‑608,2003.[25]KrönkeJ,KittlerR,BuchholzF,WindischMP,PietschmannT,BartenschlagerRandFreseM:Alternativeapproachesforeffi‑cientinhibitionofhepatitisCvirusRNAreplicationbysmallinterferingRNAs.JVirol78:3436‑3446,2004.[26]GeQ,McManusMT,NguyenT,ShenCH,SharpPA,EisenHNandChenJ:RNAinterferenceofinfluenzavirusproductionbydirectlytargetingmRNAfordegradationandindirectlyinhibitingallviralRNAtranscription.ProcNatlAcadSciUSA100:2718‑2723,2003.

[27]HeML,ZhengB,PengY,PeirisJS,PoonLL,YuenKY,LinMC,KungHFandGuanY:InhibitionofSARS‑associatedcorona‑virusinfectionandreplicationbyRNAinterference.JAMA290:2665‑2666,2003.[28]FujinoK,HorieM,HondaT,MerrimanDKandTomonagaK:InhibitionofBornadiseasevirusreplicationbyanendogenousbornavirus‑likeelementinthegroundsquirrelgenome.ProcNatlAcadSciUSA111:13175‑13180,2014.[29]HondaTandTomonagaK:Endogenousnon‑retroviralRNAviruselementsevidenceanoveltypeofantiviralimmunity.MobGenetElements22:e1165785,2016.[30]IdrisA,DavisA,SupramaniamA,AcharyaD,KellyG,TayyarY,WestN,ZhangP,McMillanCLD,SoemardyC,etal:ASARS‑CoV‑2targetedsiRNA‑nanoparticletherapyforCOVID‑19.MolTher29:2219‑2226,2021.[31]StetsonDBandMedzhitovR:TypeIinterferonsinhostdefense.Immunity25:373‑381,2006.

[32]LevyDE:Whenceinterferon?Varietyintheproductionofinter‑feroninresponsetoviralinfection.JExpMed195:15‑18,2002.[33]deWeerdNAandNguyenT:Theinterferonsandtheirrecep‑tors‑distributionandregulation.ImmunolCellBiol90:483‑491,2012.

[34]HouglumJE:Interferon:Mechanismsofactionandclinicalvalue.ClinPharm2:20‑28,1983.

[35]McNabF,Mayer‑BarberK,SherA,WackAandO'GarraA:TypeIinterferonsininfectiousdisease.NatRevImmunol15:87‑103,2015.[36]KatzeMG,HeYandGaleMJr:Virusesandinterferon:Afightforsupremacy.NatRevImmunol2:675‑687,2002.

[37]WuJandChenZJ:Innateimmunesensingandsignalingofcytosolicnucleicacids.AnnuRevImmunol32:461‑488,2014.[38]vanderVeenAG,MaillardPV,SchmidtJM,LeeSA,Deddouche‑GrassS,BorgA,KjærS,SnijdersAPandReiseSousaC:TheRIG‑I‑likereceptorLGP2inhibitsDicer‑dependentprocessingoflongdouble‑strandedRNAandblocksRNAinterferenceinmammaliancells.EMBOJ37:e97479,2018.

[39]MaillardPV,vanderVeenAG,PoirierEZandReiseSousaC:Slicinganddicingviruses:AntiviralRNAinterferenceinmammals.EMBOJ38:e100941,2019.[40]OnomotoK,OnoguchiKandYoneyamaM:RegulationofRIG‑I‑likereceptor‑mediatedsignaling:Interactionbetweenhostandviralfactors.CellMolImmunol18:539‑555,2021.[41]FleschBKandNeppertJ:FunctionsoftheFcreceptorsforimmunoglobulinG.JClinLabAnal14:141‑156,2000.

[42]DuncanARandWinterG:ThebindingsiteforC1qonIgG.Nature332:738‑740,1988.[43]EggenbergerJ,Blanco‑MeloD,PanisM,BrennandKJandtenOeverBR:TypeIinterferonresponseimpairsdifferentia‑tionpotentialofpluripotentstemcells.ProcNatlAcadSci116:1384‑1393,2019.[44]HoltzmanJandLeeH:Emergingroleofextracellularvesiclesintherespiratorysystem.ExpMolMed52:887‑895,2020.[45]GeekiyanageH,RayatpishehS,WohlschlegelJA,BrownRJrandAmbrosV:ExtracellularmicroRNAsinhumancirculationareassociatedwithmiRISCcomplexesthatareaccessibletoanti‑AGO2antibodyandcanbindtargetmimicoligonucleotides.ProcNatlAcadSciUSA117:24213‑24223,2020.

[46]MevorachD:Opsonizationofapoptoticcells.Implicationsforuptakeandautoimmunity.AnnNYAcadSci926:226‑235,2000.[47]HawkesRA:Enhancementoftheinfectivityofarbovirusesbyspecificantiseraproducedindomesticfowls.AustJExpBiolMedSci42:465‑482,1964.[48]SmattiMK,AlThaniAAandYassineHM:Viral‑inducedenhanceddiseaseillness.FrontMicrobiol9:2991,2018.[49]TiradoSMandYoonKJ:Antibody‑dependentenhancementofvirusinfectionanddisease.ViralImmunol16:69‑86,2003.

[50]KhandiaR,MunjalA,DhamaK,KarthikK,TiwariR,MalikYS,SinghRKandChaicumpaW:Modulationofdengue/zikaviruspathogenicitybyantibody‑dependentenhancementandstrate‑giestoprotectagainstenhancementinzikavirusinfection.FrontImmunol9:597,2018.[51]WanY,ShangJ,SunS,TaiW,ChenJ,GengQ,HeL,ChenY,WuJ,ShiZ,etal:Molecularmechanismforantibody‑dependentenhancementofcoronavirusentry.JVirol94:e02015‑19,2020.[52]YipMS,CheungCY,LiPH,BruzzoneR,PeirisJSMandJaumeM:Investigationofantibody‑dependentenhancement(ADE)ofSARScoronavirusinfectionanditsroleinpathogen‑esisofSARS.BMCProc5(Suppl1):P80,2011.[53]ChenX,PanZ,YueS,YuF,ZhangJ,YangY,LiR,LiuB,YangX,GaoL,etal:DiseaseseveritydictatesSARS‑CoV‑2‑specificneutralizingantibodyresponsesinCOVID‑19.SignalTransductTargetTher5:180,2020.[54]LoMW,KemperCandWoodruffTM:COVID‑19:Complement,coagulation,andcollateraldamage.JImmunol205:1488‑1495,2020.[55]BenmoussaAandProvostP:MilkMicroRNAsinhealthanddisease.ComprRevFoodSciFoodSaf18:703‑722,2019.[56]MancaS,UpadhyayaB,MutaiE,DesaulniersAT,CederbergRA,WhiteBRandZempleniJ:MilkexosomesarebioavailableanddistinctmicroRNAcargoshaveuniquetissuedistributionpatterns.SciRep8:11321,2018.[57]ZempleniJ:Milkexosomes:BeyonddietarymicroRNAs.GenesNutr12:12,2017.[58]SoyeKJ,TrottierC,RichardsonCD,WardBJandMillerWHJr:RIG‑Iisrequiredfortheinhibitionofmeaslesvirusbyretinoids.PLoSOne6:e22323,2011.[59]D'SouzaRMandD'SouzaR:VitaminAforthetreatmentofchildrenwithmeasles‑asystematicreview.JTropPediatr48:323‑327,2002.[60]HuimingY,ChaominWandMengM:VitaminAfortreatingmeaslesinchildren.CochraneDatabaseSystRev2005:CD001479,2005.

[61]ParoS,ImlerJLandMeigninC:SensingviralRNAsbyDicer/RIG‑IlikeATPasesacrossspecies.CurrOpinImmunol32:106‑113,2015.[62]LaudadioI,OrsoF,AzzalinG,CalabròC,BerardinelliF,ColuzziE,GioiosaS,TavernaD,SguraA,CarissimiCandFulciV:AGO2promotestelomeraseactivityandinteractionbetweenthetelomerasecomponentsTERTandTERC.EMBORep20:e45969,2019.


Refbacks

  • 当前没有refback。