首页出版说明中文期刊中文图书环宇英文官网付款页面

miRNA 在心脏代谢性疾病研究进展及治疗方向

陈 露, 姜 海燕
内蒙古自治区人民医院

摘要


心脏代谢性疾病是导致人类死亡率增高的重要因素之一,肥胖的成年人中有一多半是有代谢综合征的,基础代谢障
碍会直接影响细胞摄取 ATP,从而影响细胞代谢。miRNA 是单链非编码 RNA,通过直接或间接影响糖代谢和脂质代谢产生
或转运 ATP,从而促进或延缓心肌细胞的凋亡。各种 miRNA 亚型调控信使 RNA 的翻译直接影响心力衰竭、动脉粥样硬化、
高血压及糖尿病性心肌病等病理生理机制。目前,研究发现了多种基因靶点,下调或上调 miRNA 的亚型,改变基因的表观遗
传,从而精准治疗心脏代谢性疾病成为可能,因此分子靶向治疗和诊断心血管疾病具有潜在的应用价值。

关键词


心脏代谢性疾病;miRNA;靶向治疗;基因表达

全文:

PDF


参考


[1] SANTOS D, CARVALHO E. Adipose-related microRNAs as modulators of the cardiovascular system: the role of epicardial adipose tissue [J]. J Physiol, 2022, 600(5): 1171-87. [2] MONGRAW-CHAFFIN M, FOSTER M C, ANDERSON C A M, et al. Metabolically Healthy Obesity, Transition to Metabolic Syndrome, and Cardiovascular Risk [J]. J Am Coll Cardiol, 2018, 71(17): 1857-65.

[3] NEELAND I J, ROSS R, DESPRéS J P, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement [J]. Lancet Diabetes Endocrinol, 2019, 7(9): 715-25. [4] SONG R, HU X Q, ZHANG L. Mitochondrial

MiRNA in Cardiovascular Function and Disease [J]. Cells, 2019, 8(12).[5] KALAYINIA S, ARJMAND F, MALEKI M, et al. MicroRNAs: roles in cardiovascular development and disease

[J]. Cardiovasc Pathol, 2021, 50: 107296. [6] ESTEVES J V, ENGUITA F J, MACHADO U F. MicroRNAs-Mediated Regulation of Skeletal Muscle GLUT4

Expression and Translocation in Insulin Resistance [J]. J

Diabetes Res, 2017, 2017: 7267910. [7] JU J, XIAO D, SHEN N, et al. miR-150 regulates glucose utilization through targeting GLUT4 in insulin-resistant cardiomyocytes [J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(10): 1111-9. [8] LU H, BUCHAN R J, COOK S A. MicroRNA-223

regulates Glut4 expression and cardiomyocyte glucose metabolism [J]. Cardiovasc Res, 2010, 86(3): 410-20. [9] ZHOU H, ZHANG J, EYERS F, et al. Identification

of the microRNA networks contributing to macrophage differentiation and function [J]. Oncotarget, 2016, 7(20): 28806-20. [10] SOH J, IQBAL J, QUEIROZ J, et al. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion [J]. Nat Med, 2013, 19(7): 892-900. [11] YIN Z, ZHAO Y, HE M, et al. MiR-30c/PGC-1β

protects against diabetic cardiomyopathy via PPAR α [J]. Cardiovasc Diabetol, 2019, 18(1): 7. [12] TäUBEL J, HAUKE W, RUMP S, et al. Novel antisense therapy targeting microRNA-132 in patients with heart

failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study [J]. Eur Heart J, 2021, 42(2): 178-88. [13] GEVAERT A B, WITVROUWEN I, VAN

CRAENENBROECK A H, et al. miR-181c level predicts

response to exercise training in patients with heart failure and

preserved ejection fraction: an analysis of the OptimEx-Clin

trial [J]. Eur J Prev Cardiol, 2021, 28(15): 1722-33. [14] TAO L, HUANG X, XU M, et al. Value of

circulating miRNA-21 in the diagnosis of subclinical diabetic

cardiomyopathy [J]. Mol Cell Endocrinol, 2020, 518: 110944. [15] AHMED U, KHALIQ S, AHMAD H U, et al. Pathogenesis of Diabetic Cardiomyopathy and Role of miRNA

[J]. Crit Rev Eukaryot Gene Expr, 2021, 31(1): 79-92. [16] FENG B, CHEN S, GEORGE B, et al. miR133a

regulates cardiomyocyte hypertrophy in diabetes [J]. Diabetes Metab Res Rev, 2010, 26(1): 40-9. [17] WANG A, KWEE L C, GRASS E, et al. Whole blood sequencing reveals circulating microRNA associations with high-risk traits in non-ST-segment elevation acute coronary

syndrome [J]. Atherosclerosis, 2017, 261: 19-25. [18] HUANG P, HE X Y, XU M. The Role of miRNA-146a and Proinflammatory Cytokines in Carotid

Atherosclerosis [J]. Biomed Res Int, 2020, 2020: 6657734. [19] ROGANOVIĆ J. Downregulation of microRNA-146a in diabetes, obesity and hypertension may

contribute to severe COVID-19 [J]. Med Hypotheses, 2021, 146: 110448. [20] ALI F, SHEN A, ISLAM W, et al. Role of

MicroRNAs and their corresponding ACE2/Apelin signaling

pathways in hypertension [J]. Microb Pathog, 2022, 162: 105361. [21] LIU X, DONG Y, CHEN S, et al. Circulating

MicroRNA-146a and MicroRNA-21 Predict Left Ventricular Remodeling after ST-Elevation Myocardial Infarction [J]. Cardiology, 2015, 132(4): 233-41. [22] VARGA Z V, GIRICZ Z, BENCSIK P, et al. Functional Genomics of Cardioprotection by Ischemic Conditioning and the Influence of Comorbid Conditions:

Implications in Target Identification [J]. Curr Drug Targets, 2015, 16(8): 904-11. [23] SIMKHOVICH B Z, ABDISHOO S, POIZAT C, et al. Gene activity changes in ischemically preconditioned rabbit

heart gene: discovery array study [J]. Heart Dis, 2002, 4(2): 63-9.[24] ONODY A, ZVARA A, HACKLER L, JR., et al. Effect of classic preconditioning on the gene expression pattern

of rat hearts: a DNA microarray study [J]. FEBS Lett, 2003, 536(1-3): 35-40. [25] VINCENT A, GAHIDE G, SPORTOUCH-DUKHAN C, et al. Down-regulation of the

transcription factor ZAC1 upon pre- and postconditioning

protects against I/R injury in the mouse myocardium [J]. Cardiovasc Res, 2012, 94(2): 351-8. [26] VARGA Z V, ZVARA A, FARAGó N, et al. MicroRNAs associated with ischemia-reperfusion injury and

cardioprotection by ischemic pre- and postconditioning: protectomiRs [J]. Am J Physiol Heart Circ Physiol, 2014, 307(2): H216-27. [27] BARABáSI A L, OLTVAI Z N. Network biology: understanding the cell's functional organization [J]. Nat Rev Genet, 2004, 5(2): 101-13. [28] KARUNAKARAN D, RAYNER K J. Macrophage miRNAs in atherosclerosis [J]. Biochim Biophys Acta, 2016, 1861(12 Pt B): 2087-93. [29] HUA C C, LIU X M, LIANG L R, et al. Targeting

the microRNA-34a as a Novel Therapeutic Strategy for Cardiovascular Diseases [J]. Front Cardiovasc Med, 2021, 8: 784044.


Refbacks

  • 当前没有refback。