氯离子阈值分布与钢 - 混凝土界面关系的统计分析
摘要
观结构。无论这些变化的原因是什么,都可以使用概率方法来确保钢筋混凝土结构在特定时期的耐久性。概率方法
给出了给定所需置信度的设计阈值。先前的研究通过 BSE 自动图像分析和氯化物阈值分析了钢筋周围混凝土的微观
结构。研究发现,钢筋周长上钢筋与最近混凝土实体之间的最大距离与氯化物阈值之间存在统计上的显著相关性。
极值统计理论表明,最大值数据的分布是一般极值分布(GEVD)。对上述研究数据的重新分析发现,正如统计理论
所预期的,最大钢 - 混凝土距离根据 GEVD 分布。因此,由于氯化物阈值取决于钢 - 混凝土距离,其分布与 GEVD
有关。本文的分析表明,所接收的氯化物阈值是理论预测的 GEVD。从理论角度来看,GEVD 可能是许多其他腐蚀
过程的分布。将 GEVD 识别为描述钢筋混凝土(RC)结构中腐蚀起始的正确分布,可以实现更准确的防腐规划。
关键词
全文:
PDF参考
[1] Schiessl, P.; Raupach, M., “Influence of concrete
composition and microclimate on the critical chloride content
in concrete,” in Corrosion of Reinforcement in Concrete,
London, Elsevier Applied Science, 1990, pp. 49-58.
[2] M. Ehlen, “Life-365 Service Life Prediction
Model and Computer Program for Predicting the Service
Life andLife-Cycle Cost of Reinforced Concrete Exposed to
Chlorides,” Concrete Corrosion Inhibitors Association, the
National Ready Mix Concrete Association, the Slag Cement
Association, and the Silica Fume Association, 2009.
[3] Kenny, The micro structure of concrete around
embedded steel influence on the chloride threshold for
chloride induced corrosion, Haifa: Technion - Israel Institute
of Technology, 2012.
[4] M. Alonso and M. Sanchez, “Analysis of the
variability of chloride threshold values in the literature,”
Materials and Corrosion, vol. 60, no. 8, p. 631-637, 2009.
[5] L. Bertolini, F. Bolzoni, T. Pastore and P. Pedeferri, in
Corrosion of Reinforcement in, Cambridge, SCI, 1996, p. 389.
[6] C. Alonso, M. Castellote and C. Andrade, “Chloride
threshold dependence of pitting potential of reinforcements,”
Electrochimica Acta, vol. 47, no. 21, 2002.
[7] S. S. Y. O. B. Jang, “Experimental investigation of
the threshold chloride concentration for corrosion initiation
in reinforced concrete structures,” Magazine of Concrete
Research, vol. 55, no. 2, 2003.
[8] Andrade, C.; Keddam, M.; Novoa, X. R.; Perez, M.
C.; Rangel, C. M.; Takenouti, H., “Electrochemical behavior
of steel rebars in concrete: influence of environmental factors
and cement chemistry,” Electrochemica Acta, vol. 46, no.
24-25, pp. 3905-3912, 2001.
[9] Glass, G. K.; Reddy; B., “The Influence of the Steel
Concrete Interface on the Risk of Chloride Induced Corrosion
Initiation,” Corrosion of Steel in Reinforced Concrete
Structures, COST 521, Final Workshop, pp. 227-232, 18-19
February 2002.
[10] T. Vidal, A. Castel and R. Francois, “Corrosion
process and structural performance of a 17 year old reinforced
concrete beam stored in chloride environment,” Cement and
Concrete Research, vol. 37, no. 11, pp. 1551-1561, 2007.
[11] J. Galvele, “Transport processes and the mechanism
of pitting of metals,” Journal of the Electrochemical Society,
vol. 123, no. 4, pp. 464-474, 1976.
[12] Alonso, C.; Andrade, C.; Rodriguez, J.; Diez, J.
M., “Factors controlling cracking of concrete affected by
reinforcement corrosion,” Materials and Structures/Materiaux
et Constructions, vol. 31, no. 211, pp. 435-441, 1996.
[13] Kenny, Amit; Katz, Amnon, “Statistical relationship
between mix properties and the interfacial transition zone
around embedded rebar, “ Cement & Concrete Composites,
vol. 60, pp. 82-91, 2015.
[14] C.-h. LU, W.-l. JIN and R.-g. LIU, “Probabilistic
Lifetime Assessment of Marine Reinforced Concrete with
Steel,” Chinese Ocean Engineering, vol. 25, no. 2, pp. 305-
318, 2011.
[15] F. Lollini, E. Redaelli and L. Bertolini, “Analysis of
the parameters affecting probabilistic predictions of initiation
time for carbonation‐induced corrosion of reinforced
concrete structures, “ Materials and Corrosion, vol. 63, no.
12, pp. 1059-1068, 2012.
[16] R. Polder, “Critical chloride content for reinforced
concrete and its relationship to concrete resistivity, “
Materials and Corrosion, vol. 60, no. 8, p. 623—630.
[17] X. S. W. H. H. B. L. Hu Yu,“Laboratory
investigation of reinforcement corrosion initiation and chloride
threshold content for self-compacting concrete,” Cement and
Concrete Research, vol. 40, no. 10, pp. 1507-1516, 2010.
[18] S. Coles, An Introduction to Statistical Modeling of
Extreme Values, Verlag London Berlin Heidelberg: Springer,
2001.
[19] S. N. Kotz, Extreme Value Distributions: theory
andapplications, London: Imperial College Press, 2000.
[20] Darmawan, M. S; Stewart, M. G., “Effect of pitting
corrosion on capacity of prestressing wires,” Magazine of
Concrete Research, vol. 59, no. 2, pp. 131-139, 2007.
[21] Alarcon-Ruiz, L. A.; Brocato, M. B., “Size effect
in intrinsic permeability measurements,” in Conference
of American Nuclear Society - International Congress on
Advances in Nuclear Power Plants, 2005.
[22] Liang, M.-T.; Lan, J.-J., “Reliability analysis
of an existing reinforced concrete wharf laden in a chloride
environment,” Journal of the Chinese Institute of Engineers,
Transactions of the Chinese Institute of Engineers, Series A/
Chung-kuo Kung Ch’eng Hsuch K’an, vol. 26, no. 5, pp.
647-658, 2003.
[23] Ann, K. Y.; Song, H.-W., “Chloride threshold level
for corrosion of steel in concrete,” Corrosion Science, vol. 49,
pp. 4113-4133, 2007.
[24] Kenny and A. Katz, “Characterization of the
interfacial transition zone around steel rebar by means of the
mean shift method,” Materials and Structures/Materiaux Et
Constructions, vol. 45, no. 5, pp. 639-652, 2012.
[25] T. Luping and J. Gulikers, “On the mathematics
of time-dependent apparent chloride diffusion coefficient in
concrete,” Cement and Concrete Research, vol. 37, pp. 589-
5958, 2007.
DOI: http://dx.doi.org/10.12361/2661-362X-04-03-112945
Refbacks
- 当前没有refback。