首页出版说明中文期刊中文图书环宇英文官网付款页面

氯离子阈值分布与钢 - 混凝土界面关系的统计分析

Amit Kenny1, Amnon Katz2
1、沙蒙工程学院土木工程系
2、以色列理工学院 Technion 土木与环境工程学院

摘要


在文献中可以发现氯化物阈值的广泛变化。上述变化的可能原因包括:阈值测定方法、水泥化学和混凝土微
观结构。无论这些变化的原因是什么,都可以使用概率方法来确保钢筋混凝土结构在特定时期的耐久性。概率方法
给出了给定所需置信度的设计阈值。先前的研究通过 BSE 自动图像分析和氯化物阈值分析了钢筋周围混凝土的微观
结构。研究发现,钢筋周长上钢筋与最近混凝土实体之间的最大距离与氯化物阈值之间存在统计上的显著相关性。
极值统计理论表明,最大值数据的分布是一般极值分布(GEVD)。对上述研究数据的重新分析发现,正如统计理论
所预期的,最大钢 - 混凝土距离根据 GEVD 分布。因此,由于氯化物阈值取决于钢 - 混凝土距离,其分布与 GEVD
有关。本文的分析表明,所接收的氯化物阈值是理论预测的 GEVD。从理论角度来看,GEVD 可能是许多其他腐蚀
过程的分布。将 GEVD 识别为描述钢筋混凝土(RC)结构中腐蚀起始的正确分布,可以实现更准确的防腐规划。

关键词


钢筋混凝土;概率设计;氯化物阈值;统计分析;腐蚀

全文:

PDF


参考


[1] Schiessl, P.; Raupach, M., “Influence of concrete

composition and microclimate on the critical chloride content

in concrete,” in Corrosion of Reinforcement in Concrete,

London, Elsevier Applied Science, 1990, pp. 49-58.

[2] M. Ehlen, “Life-365 Service Life Prediction

Model and Computer Program for Predicting the Service

Life andLife-Cycle Cost of Reinforced Concrete Exposed to

Chlorides,” Concrete Corrosion Inhibitors Association, the

National Ready Mix Concrete Association, the Slag Cement

Association, and the Silica Fume Association, 2009.

[3] Kenny, The micro structure of concrete around

embedded steel influence on the chloride threshold for

chloride induced corrosion, Haifa: Technion - Israel Institute

of Technology, 2012.

[4] M. Alonso and M. Sanchez, “Analysis of the

variability of chloride threshold values in the literature,”

Materials and Corrosion, vol. 60, no. 8, p. 631-637, 2009.

[5] L. Bertolini, F. Bolzoni, T. Pastore and P. Pedeferri, in

Corrosion of Reinforcement in, Cambridge, SCI, 1996, p. 389.

[6] C. Alonso, M. Castellote and C. Andrade, “Chloride

threshold dependence of pitting potential of reinforcements,”

Electrochimica Acta, vol. 47, no. 21, 2002.

[7] S. S. Y. O. B. Jang, “Experimental investigation of

the threshold chloride concentration for corrosion initiation

in reinforced concrete structures,” Magazine of Concrete

Research, vol. 55, no. 2, 2003.

[8] Andrade, C.; Keddam, M.; Novoa, X. R.; Perez, M.

C.; Rangel, C. M.; Takenouti, H., “Electrochemical behavior

of steel rebars in concrete: influence of environmental factors

and cement chemistry,” Electrochemica Acta, vol. 46, no.

24-25, pp. 3905-3912, 2001.

[9] Glass, G. K.; Reddy; B., “The Influence of the Steel

Concrete Interface on the Risk of Chloride Induced Corrosion

Initiation,” Corrosion of Steel in Reinforced Concrete

Structures, COST 521, Final Workshop, pp. 227-232, 18-19

February 2002.

[10] T. Vidal, A. Castel and R. Francois, “Corrosion

process and structural performance of a 17 year old reinforced

concrete beam stored in chloride environment,” Cement and

Concrete Research, vol. 37, no. 11, pp. 1551-1561, 2007.

[11] J. Galvele, “Transport processes and the mechanism

of pitting of metals,” Journal of the Electrochemical Society,

vol. 123, no. 4, pp. 464-474, 1976.

[12] Alonso, C.; Andrade, C.; Rodriguez, J.; Diez, J.

M., “Factors controlling cracking of concrete affected by

reinforcement corrosion,” Materials and Structures/Materiaux

et Constructions, vol. 31, no. 211, pp. 435-441, 1996.

[13] Kenny, Amit; Katz, Amnon, “Statistical relationship

between mix properties and the interfacial transition zone

around embedded rebar, “ Cement & Concrete Composites,

vol. 60, pp. 82-91, 2015.

[14] C.-h. LU, W.-l. JIN and R.-g. LIU, “Probabilistic

Lifetime Assessment of Marine Reinforced Concrete with

Steel,” Chinese Ocean Engineering, vol. 25, no. 2, pp. 305-

318, 2011.

[15] F. Lollini, E. Redaelli and L. Bertolini, “Analysis of

the parameters affecting probabilistic predictions of initiation

time for carbonation‐induced corrosion of reinforced

concrete structures, “ Materials and Corrosion, vol. 63, no.

12, pp. 1059-1068, 2012.

[16] R. Polder, “Critical chloride content for reinforced

concrete and its relationship to concrete resistivity, “

Materials and Corrosion, vol. 60, no. 8, p. 623—630.

[17] X. S. W. H. H. B. L. Hu Yu,“Laboratory

investigation of reinforcement corrosion initiation and chloride

threshold content for self-compacting concrete,” Cement and

Concrete Research, vol. 40, no. 10, pp. 1507-1516, 2010.

[18] S. Coles, An Introduction to Statistical Modeling of

Extreme Values, Verlag London Berlin Heidelberg: Springer,

2001.

[19] S. N. Kotz, Extreme Value Distributions: theory

andapplications, London: Imperial College Press, 2000.

[20] Darmawan, M. S; Stewart, M. G., “Effect of pitting

corrosion on capacity of prestressing wires,” Magazine of

Concrete Research, vol. 59, no. 2, pp. 131-139, 2007.

[21] Alarcon-Ruiz, L. A.; Brocato, M. B., “Size effect

in intrinsic permeability measurements,” in Conference

of American Nuclear Society - International Congress on

Advances in Nuclear Power Plants, 2005.

[22] Liang, M.-T.; Lan, J.-J., “Reliability analysis

of an existing reinforced concrete wharf laden in a chloride

environment,” Journal of the Chinese Institute of Engineers,

Transactions of the Chinese Institute of Engineers, Series A/

Chung-kuo Kung Ch’eng Hsuch K’an, vol. 26, no. 5, pp.

647-658, 2003.

[23] Ann, K. Y.; Song, H.-W., “Chloride threshold level

for corrosion of steel in concrete,” Corrosion Science, vol. 49,

pp. 4113-4133, 2007.

[24] Kenny and A. Katz, “Characterization of the

interfacial transition zone around steel rebar by means of the

mean shift method,” Materials and Structures/Materiaux Et

Constructions, vol. 45, no. 5, pp. 639-652, 2012.

[25] T. Luping and J. Gulikers, “On the mathematics

of time-dependent apparent chloride diffusion coefficient in

concrete,” Cement and Concrete Research, vol. 37, pp. 589-

5958, 2007.




DOI: http://dx.doi.org/10.12361/2661-362X-04-03-112945

Refbacks

  • 当前没有refback。