黄孢原毛平革菌最佳生物转化含碳物质的参数评估
摘要
导致回收率降低。在一项正在进行的研究中,这种真菌黄孢原毛平革菌已被用于使 CM 失活,并降低其对金氰菊酯
的预处理能力。据报道,金孢假单胞菌通过表面氧化对 CM 进行生物转化,这会破坏吸附所需的连续石墨结构,并
改变适合吸附金氰化物的孔。目前的研究重点是使用无烟煤作为 CM 的替代品,并建立真菌处理参数,以最大程度
地减少无烟煤级 CM 的预抢劫。结果表明,黄孢假单胞菌可以在多种生长介质中存活,并具有在宽时间、纸浆密度、
温度、pH 和搅拌水平范围内使无烟煤失活的能力。在 pH4 和 37℃下,5-7 天的处理时间是最佳条件。固定培养和摇
动培养的最佳纸浆密度分别为 60% 和 25%。
关键词
全文:
PDF参考
[1] Abotsi, G. M. K., Osseo-Asare, K., (1987), “Surface
chemistry of carbonaceous gold ores. II. Effects of organic
additives on gold adsorption from cyanide solution”,
International Journal of Mineral Processing 21, 225–239.
[2] Adams, M. D. Burger, A. M., (1998), “Characterization
and blinding of carbonaceous preg-robbers in gold ores”,
Minerals Engineering 11, 919-927.
[3] Afenya, P. M., (1991), “Treatment of carbonaceous
refractory gold ores”, Minerals Engineering 4, 1043-1055.
[4] Amankwah, R. K., Yen, W. T., (2006), Effect of
carbonaceous characteristics on biodegradation and pregrobbing behaviour, in: Proceedings of the 23rd International
Mineral Processing Congress, Promed Advertising Limited,
Instanbul, 1445-1451.
[5] Arriagada, F. J., Osseo-Asare, K., (1984), “Gold
extraction from refractory ores: roasting behavior of pyrite and
arsenopyrite”, in: Precious Metals: Mining, Extraction and
Processing, The Metallurgical Society of AIME, Warrendale,
PA, 367-385.
[6] Brierley, J. A., Kulpa, C. F., (1993), “Biometallurgical
treatment of precious metal ores having refractory carbon
content”, U. S. Patent, 5,244,493.
[7] Hutchins, S. E., Brierley, J. A., Brierley, C. L.,
(1988), “Microbial pretreatment of refractory sulfide and
carbonaceous ores improves the economics of gold recovery”,
Mining Engineering 40, 249-254.
[8] Kohr, W. J., (1994), “Method of recovering gold and
other precious metals from carbonaceous ores”, US Patent,
5,338,338.
[9] Portier, R. J., (1991), “Biohydrometallurgical
processing of ores, and microorganisms therefor, US Patent,
5,021,088.
[10] Rees, K. L., Van Deventer, J. S. J., (2000), “The
mechanism of enhanced gold extraction from ores in the
presence of activated carbon”, Hydrometallurgy 58, 151-
167.
[11] Ofori-Sarpong, G., Tien, M., Osseo-Asare, K.,
(2010), “Myco-hydrometallurgy:
Coal model for potential reduction of preg-robbing
capacity of carbonaceous gold ores using the fungus,
Phanerochaete chrysosporium”, Hydrometallurgy 102, 66–
72.
[12] Ofori-Sarpong, G., Amankwah, R. K. and
Osseo-Asare, K. (2013), “Reduction of Preg-robbing
by Biomodified Carbonaceous Matter – A Proposed
Mechanism”, Minerals Engineering, Vol. 42, pp. 29–35.
[13] Amankwah, R. K., Yen, W. T. Ramsay, J., (2005), “A
two-stage bacterial pretreatment process for double refractory
gold ores”, Minerals Engineering 18, 103-108.
[14] Yen, W. T., Amankwah, R. K., Choi, Y., (2008),
Microbial pre-treatment of double refractory gold ores,
in: Proceedings of the Sixth International Symposium,
Hydrometallurgy 2008, Phoenix, USA. SME, Littleton, CO,
506-510.
[15] Afidenyo, J. K., (2008), Microbial pre-treatment of
double refractory gold ores. MSc Thesis, Queen’s University,
Kingston, Ontario, Canada.
[16] Hausen, D. M., Bucknam, C. H., (1985), Study of
preg robbing in the cyanidation of carbonaceous gold ores from
Carlin, Nevada, in: Proceedings of the Second International
Congress on Applied Mineralogy, AIME, Warrendale, PA,
833-856.
[17] Osseo-Asare, K., Afenya, P. M., Abotsi, G. M.
K., (1984), Carbonaceous Matter in Gold Ores; Isolation,
Characterization and Adsorption Behavior in Aurocyanide
Solution, in:Precious Metals: Mining, Extraction and
Processing, The Metallurgical Society of AIME, Warrendale,
PA, 125-144.
[18] Pyke, B. L., Johnston, R. F., Brooks, P., (1999), “The
characterisation and behaviour of carbonaceous material in a
refractory gold bearing ore”, Minerals Engineering 12, 851-
862.
[19] Schmitz, P. A., Duyvesteyn, S., Johnson, W. P.,
Enloe, L., McMullen, J., (2001), “Adsorption of aurocyanide
complexes onto carbonaceous matter from preg-robbing
Goldstrike ore”, Hydrometallurgy 61, 121–135.
[20] Sibrell, P. L., Wan, R. Y., Miller, J. D., (1990),
Spectroscopic analysis of
passivation reactions for carbonaceous matter from Carlin
trend ores, in: Proceedings of the Gold ‘90 Symposium,
SME, Inc., Littleton, CO, 355-363.
[21] Stenebraten, J. F., Johnson, W. P., McMullen, J.,
(2000), “Characterization of Goldstrike Ore Carbonaceous
Material Part 2”, Minerals and Metallurgical Processing 17,
7-15.
[22] Vaughan, J. P. Kyin, A., (2004), “Refractory gold
ores in Archaean greenstones, Western Australia: mineralogy,
gold paragenesis, metallurgical characterization and
classification”, Mineralogical Magazine 68, 255-277.
[23] Ibrado, A. S., Fuerstenau, D. W., (1992), “Effect
of the structure of carbon adsorbents on the adsorption of gold
cyanide”, Hydrometallurgy 30, 243-256.
[24] Ibrado, A. S., Fuerstenau, D. W., (1995). Infrared
and X-ray Photoelectron Spectroscopy Studies on the
Adsorption of Gold Cyanide on Activated Carbon. Minerals
Engineering 8, 441-458.
[25] Jones, W. G., Klauber, C., Linge, H. G., (1989).
Fundamental aspects of gold cyanide adsorption on activated
carbon, Chapter 32, in: Bhappu, R. B., Handen, R. J. (Eds.),
Gold Forum on Technology and Practices - ‘World Gold ‘89’,
SME, Littleton, Co, 278–281.
[26] Klauber, C., (1991), “X-ray photoelectron
spectroscopic study of the adsorption mechanism of
aurocyanide onto activated carbon”, Langmuir 7, 2153-
2159.
[27] Van Vuuren, C. P. J. Snyman, C. P. Boshoff A. J.,
(2000), ”Gold losses from cyanide solutions part II: The
influence of the carbonaceous materials present in the shale
material”, Minerals Engineering 13, 1177-1181.
[28] Szulczewski, M., Helmke, P., Bleam, W., (2001),
“XANES spectroscopy studies of Cr(VI) reduction by thiols
in organosulfur compounds and humic substances”, Environ.
Sci. Technol. 35, 1134-1141.
[29] Seiter, J. M., Staats-Borda, K. E., Ginder-Vogel, M.
and Sparks D. L., (2008), “XANES Spectroscopic Analysis
of Phosphorus Speciation in Alum-Amended Poultry Litter”,
Journal of Environmental Quality 37, 477-485.
[30] Liu, Q., Yang, H-y., Tong, L-l. (2014), Influence
of Phanerochaete chrysosporiumon degradation and pregrobbing capacity of activated carbon. Trans. Nonferrous Met.
Soc. China 24, 1905−1911.
[31] McDougall, G. J., Hancock, R. D., (1981), “Gold
complexes and activated carbon - a literature review”, Gold
Bulletin 14, 138-153.
[32] Tien, M., Kirk, T. K., (1988), “Lignin peroxidase
of Phanerochaete chrysosporium”, Methods in Enzymology
161, 238-249.
[33] Kirk, T. K., Farrell, R. L., (1987), “Enzymatic
combustion”: The microbial degradation of lignin, Annual
Review of Microbiology 41, 465–505.
[34] Tien, M., Kirk, T. K., (1984), Lignin-degrading
enzyme from Phanerochaete chrysosporium: purification,
characterization and catalytic properties of a unique H2O2-
requiring oxygenase, in: Proceedings of the National Academy
of Sciences, U. S. A., 81, 2280.
[35] Fakoussa, R. M., Hofrichter, M., (1999),
“Biotechnology and microbiology of coal degradation”,
Applied Microbiology and Biotechnology 52, 25–40.
[36] Madigan, M. T., Martinko, J. M., (2006). Brock
Biology of Microorganisms, 11th ed., Pearson Prentice Hall,
Upper Saddle River, NJ.
DOI: http://dx.doi.org/10.12361/2661-362X-04-03-112946
Refbacks
- 当前没有refback。