首页出版说明中文期刊中文图书环宇英文官网付款页面

黄孢原毛平革菌最佳生物转化含碳物质的参数评估

Grace Ofori-Sarpong1, Kwadwo Osseo-Asare2, Richard Osei3, Richard Kwasi Amankwah3
1、矿业技术大学矿物工程系;宾夕法尼亚州立大学能源与矿产工程系
2、宾夕法尼亚州立大学能源与矿产工程系;宾夕法尼亚州立大学材料科学与工程系
3、矿业技术大学矿物工程系

摘要


由于含碳物质(CM)的存在,难浸含碳金矿石在金氰化过程中面临挑战,这些物质会预浸溶解的金,从而
导致回收率降低。在一项正在进行的研究中,这种真菌黄孢原毛平革菌已被用于使 CM 失活,并降低其对金氰菊酯
的预处理能力。据报道,金孢假单胞菌通过表面氧化对 CM 进行生物转化,这会破坏吸附所需的连续石墨结构,并
改变适合吸附金氰化物的孔。目前的研究重点是使用无烟煤作为 CM 的替代品,并建立真菌处理参数,以最大程度
地减少无烟煤级 CM 的预抢劫。结果表明,黄孢假单胞菌可以在多种生长介质中存活,并具有在宽时间、纸浆密度、
温度、pH 和搅拌水平范围内使无烟煤失活的能力。在 pH4 和 37℃下,5-7 天的处理时间是最佳条件。固定培养和摇
动培养的最佳纸浆密度分别为 60% 和 25%。

关键词


真菌;生物转化;孵化参数;碳质;氰化金吸附;劫金

全文:

PDF


参考


[1] Abotsi, G. M. K., Osseo-Asare, K., (1987), “Surface

chemistry of carbonaceous gold ores. II. Effects of organic

additives on gold adsorption from cyanide solution”,

International Journal of Mineral Processing 21, 225–239.

[2] Adams, M. D. Burger, A. M., (1998), “Characterization

and blinding of carbonaceous preg-robbers in gold ores”,

Minerals Engineering 11, 919-927.

[3] Afenya, P. M., (1991), “Treatment of carbonaceous

refractory gold ores”, Minerals Engineering 4, 1043-1055.

[4] Amankwah, R. K., Yen, W. T., (2006), Effect of

carbonaceous characteristics on biodegradation and pregrobbing behaviour, in: Proceedings of the 23rd International

Mineral Processing Congress, Promed Advertising Limited,

Instanbul, 1445-1451.

[5] Arriagada, F. J., Osseo-Asare, K., (1984), “Gold

extraction from refractory ores: roasting behavior of pyrite and

arsenopyrite”, in: Precious Metals: Mining, Extraction and

Processing, The Metallurgical Society of AIME, Warrendale,

PA, 367-385.

[6] Brierley, J. A., Kulpa, C. F., (1993), “Biometallurgical

treatment of precious metal ores having refractory carbon

content”, U. S. Patent, 5,244,493.

[7] Hutchins, S. E., Brierley, J. A., Brierley, C. L.,

(1988), “Microbial pretreatment of refractory sulfide and

carbonaceous ores improves the economics of gold recovery”,

Mining Engineering 40, 249-254.

[8] Kohr, W. J., (1994), “Method of recovering gold and

other precious metals from carbonaceous ores”, US Patent,

5,338,338.

[9] Portier, R. J., (1991), “Biohydrometallurgical

processing of ores, and microorganisms therefor, US Patent,

5,021,088.

[10] Rees, K. L., Van Deventer, J. S. J., (2000), “The

mechanism of enhanced gold extraction from ores in the

presence of activated carbon”, Hydrometallurgy 58, 151-

167.

[11] Ofori-Sarpong, G., Tien, M., Osseo-Asare, K.,

(2010), “Myco-hydrometallurgy:

Coal model for potential reduction of preg-robbing

capacity of carbonaceous gold ores using the fungus,

Phanerochaete chrysosporium”, Hydrometallurgy 102, 66–

72.

[12] Ofori-Sarpong, G., Amankwah, R. K. and

Osseo-Asare, K. (2013), “Reduction of Preg-robbing

by Biomodified Carbonaceous Matter – A Proposed

Mechanism”, Minerals Engineering, Vol. 42, pp. 29–35.

[13] Amankwah, R. K., Yen, W. T. Ramsay, J., (2005), “A

two-stage bacterial pretreatment process for double refractory

gold ores”, Minerals Engineering 18, 103-108.

[14] Yen, W. T., Amankwah, R. K., Choi, Y., (2008),

Microbial pre-treatment of double refractory gold ores,

in: Proceedings of the Sixth International Symposium,

Hydrometallurgy 2008, Phoenix, USA. SME, Littleton, CO,

506-510.

[15] Afidenyo, J. K., (2008), Microbial pre-treatment of

double refractory gold ores. MSc Thesis, Queen’s University,

Kingston, Ontario, Canada.

[16] Hausen, D. M., Bucknam, C. H., (1985), Study of

preg robbing in the cyanidation of carbonaceous gold ores from

Carlin, Nevada, in: Proceedings of the Second International

Congress on Applied Mineralogy, AIME, Warrendale, PA,

833-856.

[17] Osseo-Asare, K., Afenya, P. M., Abotsi, G. M.

K., (1984), Carbonaceous Matter in Gold Ores; Isolation,

Characterization and Adsorption Behavior in Aurocyanide

Solution, in:Precious Metals: Mining, Extraction and

Processing, The Metallurgical Society of AIME, Warrendale,

PA, 125-144.

[18] Pyke, B. L., Johnston, R. F., Brooks, P., (1999), “The

characterisation and behaviour of carbonaceous material in a

refractory gold bearing ore”, Minerals Engineering 12, 851-

862.

[19] Schmitz, P. A., Duyvesteyn, S., Johnson, W. P.,

Enloe, L., McMullen, J., (2001), “Adsorption of aurocyanide

complexes onto carbonaceous matter from preg-robbing

Goldstrike ore”, Hydrometallurgy 61, 121–135.

[20] Sibrell, P. L., Wan, R. Y., Miller, J. D., (1990),

Spectroscopic analysis of

passivation reactions for carbonaceous matter from Carlin

trend ores, in: Proceedings of the Gold ‘90 Symposium,

SME, Inc., Littleton, CO, 355-363.

[21] Stenebraten, J. F., Johnson, W. P., McMullen, J.,

(2000), “Characterization of Goldstrike Ore Carbonaceous

Material Part 2”, Minerals and Metallurgical Processing 17,

7-15.

[22] Vaughan, J. P. Kyin, A., (2004), “Refractory gold

ores in Archaean greenstones, Western Australia: mineralogy,

gold paragenesis, metallurgical characterization and

classification”, Mineralogical Magazine 68, 255-277.

[23] Ibrado, A. S., Fuerstenau, D. W., (1992), “Effect

of the structure of carbon adsorbents on the adsorption of gold

cyanide”, Hydrometallurgy 30, 243-256.

[24] Ibrado, A. S., Fuerstenau, D. W., (1995). Infrared

and X-ray Photoelectron Spectroscopy Studies on the

Adsorption of Gold Cyanide on Activated Carbon. Minerals

Engineering 8, 441-458.

[25] Jones, W. G., Klauber, C., Linge, H. G., (1989).

Fundamental aspects of gold cyanide adsorption on activated

carbon, Chapter 32, in: Bhappu, R. B., Handen, R. J. (Eds.),

Gold Forum on Technology and Practices - ‘World Gold ‘89’,

SME, Littleton, Co, 278–281.

[26] Klauber, C., (1991), “X-ray photoelectron

spectroscopic study of the adsorption mechanism of

aurocyanide onto activated carbon”, Langmuir 7, 2153-

2159.

[27] Van Vuuren, C. P. J. Snyman, C. P. Boshoff A. J.,

(2000), ”Gold losses from cyanide solutions part II: The

influence of the carbonaceous materials present in the shale

material”, Minerals Engineering 13, 1177-1181.

[28] Szulczewski, M., Helmke, P., Bleam, W., (2001),

“XANES spectroscopy studies of Cr(VI) reduction by thiols

in organosulfur compounds and humic substances”, Environ.

Sci. Technol. 35, 1134-1141.

[29] Seiter, J. M., Staats-Borda, K. E., Ginder-Vogel, M.

and Sparks D. L., (2008), “XANES Spectroscopic Analysis

of Phosphorus Speciation in Alum-Amended Poultry Litter”,

Journal of Environmental Quality 37, 477-485.

[30] Liu, Q., Yang, H-y., Tong, L-l. (2014), Influence

of Phanerochaete chrysosporiumon degradation and pregrobbing capacity of activated carbon. Trans. Nonferrous Met.

Soc. China 24, 1905−1911.

[31] McDougall, G. J., Hancock, R. D., (1981), “Gold

complexes and activated carbon - a literature review”, Gold

Bulletin 14, 138-153.

[32] Tien, M., Kirk, T. K., (1988), “Lignin peroxidase

of Phanerochaete chrysosporium”, Methods in Enzymology

161, 238-249.

[33] Kirk, T. K., Farrell, R. L., (1987), “Enzymatic

combustion”: The microbial degradation of lignin, Annual

Review of Microbiology 41, 465–505.

[34] Tien, M., Kirk, T. K., (1984), Lignin-degrading

enzyme from Phanerochaete chrysosporium: purification,

characterization and catalytic properties of a unique H2O2-

requiring oxygenase, in: Proceedings of the National Academy

of Sciences, U. S. A., 81, 2280.

[35] Fakoussa, R. M., Hofrichter, M., (1999),

“Biotechnology and microbiology of coal degradation”,

Applied Microbiology and Biotechnology 52, 25–40.

[36] Madigan, M. T., Martinko, J. M., (2006). Brock

Biology of Microorganisms, 11th ed., Pearson Prentice Hall,

Upper Saddle River, NJ.




DOI: http://dx.doi.org/10.12361/2661-362X-04-03-112946

Refbacks

  • 当前没有refback。