首页出版说明中文期刊中文图书环宇英文官网付款页面

泡沫浮选从煤中分离微矿物的研究

Saroj Kumar Sahoo, Nikkam Suresh, Atul Kumar Varma
印度理工学院

摘要


在过去,煤显微组分的分离是基于密度差进行的,例如沉浮分析、密度梯度离心(DGC)技术等。这些方法
的成功有限。泡沫浮选是一种物理化学过程,根据容器中表面财产的差异,在由两个不同区域(即矿浆区和泡沫区)
组成的容器中分离颗粒。单个尺寸范围颗粒的可浮性随其灰分百分比和存在的显微组分含量而变化。因此,浮选速
率常数最终成为煤颗粒显微组分百分比的函数。在本论文中,通过使用亚烟煤级煤进行粒度浮选试验进行了尝试,
并根据不同浮选时间间隔精矿的显微组分百分比报告建立了浮选动力学。这些结果与该过程的动力学行为有关。

关键词


煤炭浮选;浮选动力学;Macerals 公司

全文:

PDF


参考


[1] Jiménez, A., Iglesias, M. J., Laggoun-Défarge, F.,

& SuarezRuiz, I. (1998). Study of physical and chemical

properties of vitrinites. Inferences on depositional and

coalification controls. Chemical Geology, 150(3), 197-221.

Image Analysis Technique.

[3] Honaker, R. Q., Mohanty, M. K., & Crelling, J. C.

(1996). Coal maceral separation using column flotation.

Minerals Engineering, 9(4), 449-464.

[4] Sarkar, G. G., Ghose, S., Chaudhuri, S. G., Sakha, S.,

& Daschowdhury, K. P. (1984). Selectivity of coal macerals

during flotation and oil agglomeration: a case study. Coal

Perparation, 1(1), 39-52.

[5] Shu, X., Wang, Z., & Xu, J. (2002). Separation and

preparation of macerals in Shenfu coals by flotation. Fuel,

81(4), 495-501.

[6] Tempelmeyer, K. E., Crelling, J., Hippo, E., Paul,

B., & Yen, M. (1991). Coal refining by maceral liberation

and separation. In annual international pittsburgh coal

conference (pp. 329-336). University of pittsburgh school of

engineering centre for energy.

[ 7 ] C r e l l i n g , J . C . ( 1 9 8 9 ) . S e p a r a t i o n a n d

characterization of coal macerals: accomplishments and

future possibilities. Prepr. Pap., Am. Chem. Soc., Div. Fuel

Chem.; (United States), 34 (CONF-8904170-).

[8] Dyrkacz, Gary R., Carol AA Bloomquist, and

Ljiljana Ruscic. “Chemical variations in coal macerals

separated by density gradient centrifugation.” Fuel 63, no. 8

(1984): 1166-1173.

[9] Jorjani, E., Esmaeili, S., & Khorami, M. T. (2013).

The effect of particle size on coal maceral group’s separation

using flotation. Fuel, 114, 10-15.

[10] Laskowski, J. S. (2001). Fine-coal utilization.

Developments in Mineral Processing, 14, 307-351.

[11] Arnold, B. J., & Aplan, F. F. (1989). The

hydrophobicity of coal macerals. Fuel, 68(5), 651-658.

[12] Sahoo, S. K., Suresh, N., & Varma, A. K. (2017).

Kinetic studies on petrographic components of coal in batch

flotation operation. International Journal of Coal Preparation

and Utilization, 1-22.

[13] Hower, J. C., Kuehn, K. W., Parekh, B. K.,

& Peters, W. J. (2000). Maceral and microlithotype

beneficiation in column flotation at the powell mountain coal

mayflower preparation plant, Lee County, Virginia. Fuel

processing technology, 67(1), 23-33.

[14] Shu, X., Wang, Z., & Xu, J. (2002). Separation and

preparation of macerals in Shenfu coals by flotation. Fuel,

81(4), 495-501.

[15] Honaker, R. Q., Mohanty, M. K., & Crelling, J.

C. (1996). Coal maceral separation using column flotation.

Minerals engineering, 9(4), 449-464.

[16] Jorjani, E., Hower, J. C., Chelgani, S. C., Shirazi,

M. A., & Mesroghli, S. (2008). Studies of relationship

between petrography and elemental analysis with

grindability for Kentucky coals. Fuel, 87(6), 707-713.

[17] Taylor, G. H., Teichmüller, M., Davis, A. C. F. K.,

Diessel, C. F. K., Littke, R., & Robert, P. (1998). Organic

petrology.

[18] ICCP, I. (2001). Handbook Coal Petr. suppl. to

2nd ed. ICCP. 1998. The new vitrinite classification (ICCP

System 1994). Fuel, 77, 349-358.

[19] For Coal, I. C. (1998). The new vitrinite

classification (ICCP System 1994). Fuel, 77(5), 349-358.




DOI: http://dx.doi.org/10.12361/2661-362X-04-04-115866

Refbacks

  • 当前没有refback。