橡胶增韧阻燃剂(FR)聚酰胺11纳米复合材料第2部分: 多壁碳纳米管(MWNT)与蒙脱土纳米粘土之间的 协同作用
摘要
纳米复合材料配方。SEBS-g-MA弹性体的成功完全提高了材料的延展性。尽管非卤化FR添加剂和蒙脱土
(MMT)nanoclay 成功地降低了热释放容量(HRC)和峰值热释放速率(pHRR),但其特征是微尺度燃烧量热
仪(MCC)。橡胶增韧配方均未达到 UL94V0 认证,这是许多 FR 聚合物应用的基准。作为本研究的第二部分,我
们探索了纳米粘土和多壁碳纳米管(MWNT)这两种纳米颗粒之间的协同作用,以了解是否可以实现更好的
阻燃性能。TEM显微照片表明,纳米粘土和多壁碳纳米管都达到了高度分散。可燃性结果表明,所有配方均达
到UL94V0等级,与之前不含MWNT的配方相比,这是一个显著的改进。炭形态表征表明,固体碳质煤焦层被
Nanoclay和MWNT增强。
关键词
全文:
PDF参考
[1] S. C. Lao, J. H. Koo, T. J. Moon, M. Londa, C. C. Ibeh,
G. E. Wissler and L. A. Pilato, "Flame-retardant Polyamide 11
Nanocomposites: Further Thermal and Flammability Studies,"
Journal of Fire Sciences, 2011.
[2] M. Schmid, A. Amado and K. Wegener., "Polymer
powders for selective laser sintering (SLS)," in AIP Conference
proceedings. Vol. 1664. No. 1. AIP Publishing., 2015.
[3] H. Wu, R. Ortiz and J. H. Koo, "Rubber toughened
flame retardant (FR) polyamide 11 nanocomposites Part 1:
the effect of SEBS-gMA elastomer and nanoclay," Flame
Retardancy and Thermal Stability of Materials, vol. 1, no. 1,
pp. 25-38, 2017.
[4] H. Wu, R. Ortiz and J. H. Koo, "Self-Extinguishing
and Non-Drip Flame Retardant Polyamide 6 Nanocomposite:
Mechanical, Thermal, and Combustion Behavior," Flame
Retardancy and Thermal Stability of Materials, vol. 1, no. 1,
pp. 1-13, 2018.
[5] S. Ping’an, L. Xu, Z. Guo, Y. Zhang and F.
Zhengping, "Flameretardant-wrapped carbon nanotubes for
simultaneously improving the flame retardancy and mechanical
properties of polypropylene," Journal of Materials Chemistry,
vol. 18, no. 42, pp. 5083-5091, 2008.
[6] G. Beyer, "Short communication: Carbon nanotubes as
flame retardants for polymers," Fire and Materials, vol. 26, no.
6, pp. 291-293, 2002.
[7] H.-Y. Ma, L.-F. Tong, Z.-B. Xu and Z.-P. Fang,
"Functionalizing Carbon Nanotubes by Grafting on Intumescent
Flame Retardant: Nanocomposite Synthesis, Morphology,
Rheology, and Flammability," Advanced Functional Materials,
vol. 18, no. 3, pp. 414-421,2008.
[8] N. A. Isitman and C. Kaynak, "Nanoclay and carbon
nanotubes as potential synergists of an organophosphorus
flame-retardant in poly(methyl methacrylate)," Polymer
Degradation and Stability, vol. 95, no. 9, pp. 1523-1532, 2010.
[9] G. Beyer, "Filler blend of carbon nanotubes and
organoclays with improved char as a new flame retardant
system for polymers and cable applications," Fire and
Materials, vol. 29, no. 2, pp. 61-69, 2005.
[10] B. Johnson, E. Allcorn, M. G. Beak and J. H. Koo,
"Combined Effects of Montmorillonite Clay, Carbon Nanofiber,
and Flammability on Mechanical and Flammability Properties
of Polyamide 11 Nanocomposites," in SFF Symposium, Austin,
TX, 2011.
[11] Advanced Laser Materials, "http://www.alm-llc.
com," 2 2 2009. [Online]. Available: http://www.alm-llc.com/
MSDS/MSDS_FR- 106.pdf. [Accessed 27 10 2017].
[12] J. H. Koo, Fundamentals, Properties and
Applications of Polymer Nanocomposites, Cambridge, UK:
Cambridge University Press, 2016.
[13] SOUTHERN CLAY PRODUCTS, "Cloisiter 30B
Typical Physical Properties Bulletin," Gonzales, TX.
[14] D. R. Paul and L. M. Robeson, "Polymer
nanotechnology: Nanocomposites,"
Polymer, vol. 49, no. 15, pp. 3187-3204, 2008.
[15] U. Braun, S. Bernhard, F. M. A. and C. Jäger,
"Flame retardancy mechanisms of aluminium phosphinate in
combination with melamine polyphosphate and zinc borate in
glass-fibre reinforced polyamide 6,6," Polymer Degradation
and Stability, vol. 92, no. 8, pp. 1528-1545, 2007.
[16] R. E. Lyon, R. Walters and S. Stoliarov, "Screening
Flame Retardants for Plastics Using Microscale Combustion
Calorimetry," Polymer Engineering & Science, vol. 47, no. 10,
pp. 1501-1510, 2007.
[17] U. Braun, B. Schartel, M. A. Fichera and C. Jäger,
"Flame retardancy mechanisms of aluminium phosphinate in
combination with melamine polyphosphate and zinc borate in
glass-fibre reinforced polyamide 6,6," Polymer Degradation
and Stability, vol. 92, no. 8, pp. 1528-1545, 2007.
[18] A. Hao, I. Wong, H. Wu, B. Lisco, B. Ong, A.
Sallean, S. Bulter, M. Londa and J. H. Koo, "Mechanical,
thermal, and flame-retardant performance of polyamide
11–halloysite nanotube nanocomposites," Journal of Materials
Science, vol. 50, no. 1, pp. 157-167, 2015.
DOI: http://dx.doi.org/10.12361/2661-3824-04-06-105374
Refbacks
- 当前没有refback。