首页出版说明中文期刊中文图书环宇英文官网付款页面

使用软件评估与路面深度相关的柔性路面挠度(以吉马 至谢卡路为例)

塔雷 肯·
吉马大学理工学院土木与环境工程学院

摘要


为了满足中长期发展计划,埃塞俄比亚的公路建设需求越来越大。道路从该国首都向四面八方延伸。本研究的
目的是使用软件沿吉马至谢卡路段评估柔性路面相对于路面深度的挠度,并将实验室结果与埃塞俄比亚道路管理局
(ERA)标准进行比较。Ever Stress 软件(ESS)是一种数值分析技术,用于获得路面层的挠度。本研究的方法是找出道
路参数(尺寸、层厚、弹性模量、泊松比、荷载和压力)在减少沥青路面疲劳开裂和车辙的主要原因方面的敏感性,
沥青层底部的临界拉伸应变和路基顶部的临界压缩应变。在获得各层的 CBR 结果后,采用的分析方法是路面材料的弹
性模量和泊松比作为设计参数。预期结果表明,沥青路面的位移或挠度(uz)高达 0.38mm,并随着路面厚度的增加而
逐渐减小。较大的挠度值表示过度应力状态,这会导致路面因疲劳或累积塑性变形而开裂和变形。因此,路面层的相
对挠度随着路面深度的增加而减小。

关键词


挠度;柔性路面;层厚;路面模数

全文:

PDF


参考


[1] Gupta. (2014). comparative structural analysis of

flexible pavements using finite element method. The

International Journal of Pavement Engineering and Asphalt

Technology, Volume: 15, pp. 11-19. [2] Taneerananon, Somchainuek, Thongchim, &

Yandell. (2014). analysis of stress, strain and deflection of

pavements using finite element. Journal of Society for Transportation and Traffic Studies, Vol. 1 No. 4.

Hydraulic Engineering and Design,

[3] Taneerananon, Somchainuek, Thongchim, &

Yandell. (2014). analysis of stress, strain and deflection of

pavements using finite element. Journal of Society for Transportation and Traffic Studies, Vol. 1 No. 4. [4] Garba, R. (2002). A Thesis on Permanent

Deformation properties of Asphalt Concrete mixtures. Department of Road and Railway Engineering, Norwegian University of Science and Technology. [5] Ethiopian Roads Authority Standard Manuals. Jimma-Mizan Road upgrading project. 2007. [6] Burmister, D. (1945). The general theory of stresses

and displacements in layered soil system. Journal of applied

physics, vol. 16, pp. 84-94, 126-126-127, 296-302. [7] Emmanuel O., E. a. (2009). Fatigue and rutting

strain analysis of flexible pavements designed using CBR methods. African Journal of Environmental Science and

Technology, Vol. 3 (1 2), pp. 41 2-421. [8] Yang, H. (1973). Asphalt Pavement Design – The

Shell Method, Proceedings. 4th International Conference on Structural Design of Asphalt Pavements. [9] Zaghloul S and White, T. (1993). Use of a Three

Dimensional, Dynamic Finite Element Program for Analysis

of Flexible Pavement. In Transportation Research Record

1388, TRB, Washington D. C., pp. 6069. [10] Emmanuel O., E. a. (2009). Fatigue and rutting

strain analysis of flexible pavements designed using CBR methods. African Journal of Environmental Science and

Technology, Vol. 3 (1 2), pp. 41 2-421. [11] Choudhary, D. K.; Joshi, Y. P. 2014. A Detailed

Study of Cbr Method for Flexible Pavement Design, International Journal of Engineering Research and

Applications, 4 (6), pp. 239-253. [12] Cai, Y.; Sangghaleh, A.; Pan, E. 2015. Effect of

anisotropic base/interlayer on the mechanistic responses of

layered pavements, Computers and Geotechnics, 65, pp. 250–257. [13] Androjić, I., Dimter, S. 2015. Influence of

compaction temperature on the properties of Marshall

Specimens. // The Baltic Journal of Road and Bridge

Engineering. X (2015), 4, pp. 309-315. [14] Gupta, A., Kumar, P., and Rastogi, R. (2014), “Critical Review of Flexible Pavement Performance

Models”, Korean Society of Civil Engineers (KSCE), Journal of Civil Engineering, Springer, Vol. 18, No. 1, pp. 142-148. [15] Abed, A. H., and Al-Azzawi, A. A. (2012), “Evaluation of Rutting Depth in Flexible Pavements by

Using Finite Element Analysis and Local Empirical Model”, American Journal of Engineering and Applied Sciences, Vol. 5, No. 2, pp. 163-169.




DOI: http://dx.doi.org/10.12361/2661-3824-04-08-111076

Refbacks

  • 当前没有refback。