土壤侵蚀估算模型的比较与适用性
摘要
尽管这是一个全球性问题,但它对居住在发展中国家的农民产生了不利影响。因此,提供土壤流失信息对于规划
和实施适当的水土保持措施至关重要。因此,开发了侵蚀估计模型,并将其分为基于经验、概念和物理的广义保
护伞。本文主要旨在比较广泛实施的土壤侵蚀估算模型的机会和局限性,并通过选择广泛使用的模型,如 USLE、
RUSLE、SLMSA 和 WEPP 来审查其适用性。这项审查的结果表明,所审查的侵蚀模型是为了预测坡面和细沟侵蚀
造成的土壤损失而设计的。来自研究的证据表明,通过根据当地环境条件进行校准,R/USLE模型可以普遍使用。然而,
它们很简单,需要更少的数据和计算时间;它们不是事件响应型的,测量的是冲沟和河岸侵蚀造成的土壤损失。但是,
RUSLE 模型的参数计算过程与 USLE 模型不同。本研究还描述了 SLEMSA 模型将土壤侵蚀因素视为一个单独的实体,
并受到 LS 因素的高度影响。WEPP 模型能够在短时间内估计土壤损失和异地侵蚀率,但是;它只适用于个别山坡。
因此,根据这次审查的结果,提出了以下建议供进一步研究,以填补空白;R/USLE 参数的升级,SLMSA 地形子模
型的修改,以及 WEPP 模型中基本参数的修订,以估计大型集水区的侵蚀。
关键词
全文:
PDF参考
[1] Ganasri, B. P., and Ramesh, H. 2016. Assessment
of soil erosion by RUSLE model using remote sensing and
GIS-A case study of Nethravathi Basin. Geoscience Frontiers,
7 (6); 953-961.
[2] Dawit, K. 2020. Participatory Identification of Major
Natural Resource Constraints and Potentials Under Koka_xfffe_Lewate Watershed, Tembaro Woreda, Kambata Tambaro Zone
of Southern Ethiopia. International Journal of Energy and
Environmental Science, 5 (1); 1-6.
[3] Mohammed, S., Alsafadi, K., Talukdar, S., Kiwan,
S., Hennawi, S., Alshihabi, O., Sharaf, M., and Harsanyie, E.
2020. Estimation of soil erosion risk in southern part of Syria
by using RUSLE integrating geo informatics approach. Remote
Sensing Applications: Society and Environment, 20; 1-14.
[4] Han, J., Wenyan Ge, Hei, Z., Cong, C., Ma, C., Xie, M.,
Liu, B., Wei Feng, F. W., and Juying Jiao. 2020. Agricultural
land use and management weaken the soil erosion induced by
extreme rainstorms. Agriculture, Ecosystems & Environment,
301.
[5] Phinzi, K., Abriha, D., Bertalan, L., Holb, I., and
Szabó, S. 2020. Machine Learning for Gully Feature
Extraction Based on a Pan-Sharpened Multispectral Image:
Multiclass vs. Binary Approach. International Journal of Geo_xfffe_Information, 9; 252.
[6] Zhao, J., Yang, Z., and Govers, G. 2019. Soil and
water conservation measures reduce soil and water losses
in China but not down to background levels: evidence from
erosion plot data. Geoderma, 337; 729-741.
[7] Karydas, C. G., Panagos, P., and Gitas, I. Z. 2014.
A classification of water erosion models according to their
geospatial characteristics. International Journal of Digital
Earth, 7 (3); 229-250.
[8] Wischmeier, W. H., and Smith, D. D. 1965. Predicting
Rainfall-Erosion Losses from Cropland East of the Rocky
Mountains: Guide for Selection of Practices for Soil and Water
Conservation. In USDA Agricultural Handbook (p. 282).
[9] Wischmeier, W. H., and Smith, D. D. 1978. Predicting
Soil Erosion Losses: A Guide to Conservation Planning. In
USDA Agricultural Handbook (p. 537).
[10] Renard, K. G., Foster, G. R., Weesies, G. A.,
and Porter, J. P. 1997. RUSLE: revised universal soil loss
equation. J. Soil Water Conserv, 46; 30-33.
[11] Nearing, M. A., Foster, G. R., Lane, L. J., and
Finkner, S. C. 1989. A process-based soil erosion model
for USDA-water erosion prediction project technology.
Transactions of the ASAE, 32; 1587-1593.
[12] Morgan, R. C. P. 1995. Soil Erosion and
Conservation (p. 198). Longman Group UK Limited, London.
[13] Elwell, H. A. 1978. Modelling Soil losses in Southern
Africa. J. Agric. Eng. Res. 23; 117-127.
[14] Knisel, W. 1980. CREAMS, a field scale model for
chemicals, runoff, and erosion from agricultural management
systems, US Department of Agriculture Research Service
Report No. 26.
[15] Beasley, D. B., Huggins, L. F., and Munke, E. J.
1980. ANSWERS - a model for watershed planning. Trans
Am Soc. Agric Eng., 23; 938-944.
[16] Granata, F., Gargano, R., and Marinis, G. 2016.
Support Vector Regression for Rainfall- Runoff Modeling in
Urban Drainage: A Comparison with the EPA’s Storm Water
Management Model. Water, 8 (3); 13.
[17] Beven, K. J. 2012. Rainfall-Runoff Modelling. In
The Primer(2nd ed.). Wiley-Blackwell.
[18] Igwe, P. U., Onuigbo, A. A., Chinedu, O. C., Ezeaku,
I. I., and Muoneke, M. M. 2017. Soil Erosion: A Review of
Models and Applications. International Journal of Advanced
Engineering Research and Science, 14 (12); 138-150.
[19] Sitterson, J., Knightes, C., Parmar, R., Wolfe, K.,
Muche, M., and Avant, B. 2017. An Overview of Rainfall_xfffe_Runoff Model Types.
[20] Chandramohan, T., Venkatesh, B., and Balchand, A.
N. 2015. Evaluation of Three Soil Erosion Models for Small
Watershed. International Conference on Water Resources,
Coastal and Ocean Engineering (ICWRCOE) Aquatic
Procedia, 4; 1227-1234.
[21] Morgan, R. P. C. 2005. Soil Erosion and
Conservation, 3rd Edition. Blackwell Publishing, Malden,
U.S.A.
[22] Devi, G. K., Ganasri, B. P., and Dwarakish, G. S.
2015. A Review on Hydrological Models. Aquatic Procedia, 4,
1001-1007.
[23] Mateus, A., and Salumbo, D. O. 2020. A Review of
Soil Erosion Estimation Methods. Agricultural Sciences, 11;
667-691.
[24] Atinafu, D. 2015. Surface Water Potential
Assessment and Demand Scenario Analysis in Omo Gibe
River Basin. MSc Thesis, Addis Ababa University, Addis
Ababa, Ethiopia.
[25] Merritt, W. S., Letcher, R. A., and Jakeman, A. J.
2003. A Review of Erosion and Sediment Transport Model.
Environmental Modelling and Software, 18; 761-799.
[26] Alewell, C., Borrelli, P., Meusburger, K., and
Panagos, P. 2019. Using the USLE: Chances, challenges and
limitations of soil erosion modeling. International Soil and
Water Conservation Research, 7 (3); 203-225.
[27] Gia, T. P., Degener, J., and Kappas, M. 2018.
Integrated universal soil loss equation (USLE) and
Geographical Information System (GIS) for soil erosion
estimation in A Sap basin: Central Vietnam. International Soil
and Water Conservation Research, 6 (2); 99-110.
[28] Millward, A. A., and Ersey, J. E. 1999. Adapting
the RUSLE to model soil erosion potential in a mountainous
tropical watershed. Journal of Catena, 38 (2); 109-129.
[29] Balabathina, V. N., Raju, R. P., Mulualem, W., and
Tadele, G. 2020. Estimation of soil loss using remote sensing
and GIS-based universal soil loss equation in northern
catchment of Lake Tana Sub-basin, Upper Blue Nile Basin,
Northwest Ethiopia. Environmental Systems Research, 7 (35);
1-32.
[30] Jazouli, A. El, Barakat, A., Ghafiri, A., Moutaki, S.
El, and Ettaqy, A. 2017. Soil erosion modeled with USLE,
GIS, and remote sensing: a case study of Ikkour watershed in
Middle Atlas (Morocco). Geoscience Letters, 4 (25); 1-12.
[31] Bagarello, V., Di Stefano, C., Ferro, V., and
Pampalone, V. 2017. Predicting maximum annual values of
event soil loss by USLE-type models, Catena. 155; 10-19.
[32] Stolpe, N. B. 2005. A comparison of the RUSLE,
EPIC and WEPP erosion models as calibrated to climate and
soil of south-central Chile. Acta Agriculturae Scandinavica
Section B Soil and Plant Science, 55 (1); 2-8.
[33] Arnhold, S., Lindner, S., Lee, B., Martin, E.,
Kettering, J., and Nguyen, T. T. 2014. Conventional and
organic farming: Soil erosion and conservation potential for
row crop cultivation. Geoderma, 219; 89-105.
[34] Auerswald, K., Kainz, M., and Fiener, P. 2003.
Soil erosion potential of organic versus conventional farming
evaluated by USLE modeling of cropping statistics for
agricultural districts in Bavaria. Soil Use and Management, 19
(4); 305-311.
[35] Hajigholizadeh, M., Melesse, A. M., and Fuentes,
H. R. 2018. Erosion and Sediment Transport Modelling
in Shallow Waters: A Review on Approaches, Models and
Applications. International Journal of Environmental Research
and Public Health, 15; 518.
[36] Jaramillo, F. 2007. Estimating and Modelling Soil
Loss and Sediment Yield in the Maracas-St. Joseph River
Catchment with Empirical Models (RUSLE and MUSLE) and
a Physically Based Model (Erosion 3D). Masters thesis, McGill
University, Montreal.
[37] SWCS (Soil and Water Conservation Society) 1995.
Revised Universal Soil Loss Equation, User Guide (1.04). Soil
and Water Conservation Society, Ankeny.
[38] Renard, K. G., Laflen, J. M., Foster, G. R., and
Mccool, D. K. 1994. The Revised Soil Loss Equation. pp.
105-126. In Lal, R. (ed.), Soil Erosion Research Methods.
Conservation Society, Ankeny.
[39] Brown, L. C., and Foster, G. R. (1987). Storm
erosivity using idealized intensity distributions. Transactions
of the ASAE, 30 (2), 379-0386.
[40] Penning de, V., F. W. T., Agus, F., and Kerr, J.
1998. Soil Erosion at multiple scales: Principles and methods
for assessing causes and impacts. CABI Publishing, United
Kingdom.
[41] McCool, D. K., Foster, G. R., Renard, K. G., Yoder,
D. C., and Weeisies, G. A. pp. 11-15. 1995. The Revised
Universal Soil Loss Equation. In: Department of Defense/
Interagency Workshop on Technologies to Address Soil
Erosion on Department of Defense Lands San Antonio, TX.
[42] Tiwari, A. K., Risse, L. M., and Nearing, M. A.
(2000). Evaluation of WEPP and its comparison with USLE
and RUSLE. Transactions of the ASAE, 43 (5), 1129.
[43] Breetzke, G. D., Koomen, E., and Critchley, W. R.
S. 2013. GIS-Assisted Modelling of Soil Erosion in a South
African Catchment: Evaluating the USLE and SLEMSA
Approach. Water Resources Planning, Development and
Management, 54-71.
[44] Igwe, C. A., Akamigbo, F. O. R., and Mbagwu, J. S. C.
1999. Application of SLEMSA and USLE erosion models for
potential erosion hazard mapping in South-eastern Nigeria.
International Agrophysic, 13 (1); 41-48.
[45] Bobe, B. 2004. Evaluation of soil erosion in the
Harerge region of Ethiopia using soil loss models, rainfall
simulation and field trials. Doctoral Dissertation, University of
Pretoria, South Africa.
[46] Elwell, H. A. 1976. Soil Loss Estimator for Southern
Africa. Natal Agricultural Research Bulletin No 7, Department
of Agricultural Technical Services, Natal.
[47] Elwell, H. 1980. A Soil Loss Estimator Technique
for Southern Africa. pp. 281-292. In: Morgan, R. (eds.), Soil
Loss Conservation, Problems and Prospects. Wiley, Hoboken.
[48] Ajon, A. T., Obi, M. E., and Agber, P. 2018.
Prediction of Soil Loss using SLEMSA and USLE Erosion
Models for an Agricultural Field in Makurdi, Benue State,
Nigeria.International Journal of Innovative Agriculture &
Biology Research, 6 (3); 21-30.
[49] Kinnell, P. I. A. 2017. A comparison of the abilities
of the USLE-M, RUSLE2 and WEPP to model event erosion
from bare fallow areas. Science of the Total Environment,
596–597; 32-42.
[50] Laflen, J. M., Lane, L. J., and Foster, G. R. 1991.
WEPP: a new generation of erosion prediction technology. J.
Soil Water Conserv, 46 (1); 34-38.
[51] Flanagan, D. C., and Nearing, M. A. 1995. USDAWaterErosion Prediction Project: hillslope profile and
watershed model documentation. Nserl Rep 10, 1-123.
[52] Foster, G. R., and Meyer, L. D. 1972. A Closed
Form Soil Erosion Equation for Upland Erosion. In: Shen,
H. W. (eds.),Sedimentation. Colorado State University, Ft
Collins,Colorado, 12.
[53] Han, F., Ren, L., Zhang, X., and Li, Z. 2016. The
WEPP Model Application in a Small Watershed in Loess
Plateau. PLoS ONE, 11 (3); 1-11.
[54] Meinen, B. U., and Robinson, D. T. 2021.
Agricultural erosion modelling: Evaluating USLE and WEPP
field-scale erosion estimates using UAV time-series data.
Environmental Modelling and Software, 137.
DOI: http://dx.doi.org/10.12361/2661-3824-04-12-118854
Refbacks
- 当前没有refback。