首页出版说明中文期刊中文图书环宇英文官网付款页面

土壤侵蚀估算模型的比较与适用性

Dawit Kanito*1, Samuel Feyissa2
1、阿雷卡农业研究中心南方农业研究所自然资源管理局
2、哈拉玛雅大学自然资源管理与环境科学学院

摘要


土壤侵蚀是一个具有全球挑战性的问题,它会加剧土地退化和失去最肥沃的土壤,从而阻碍农业生产力。
尽管这是一个全球性问题,但它对居住在发展中国家的农民产生了不利影响。因此,提供土壤流失信息对于规划
和实施适当的水土保持措施至关重要。因此,开发了侵蚀估计模型,并将其分为基于经验、概念和物理的广义保
护伞。本文主要旨在比较广泛实施的土壤侵蚀估算模型的机会和局限性,并通过选择广泛使用的模型,如 USLE、
RUSLE、SLMSA 和 WEPP 来审查其适用性。这项审查的结果表明,所审查的侵蚀模型是为了预测坡面和细沟侵蚀
造成的土壤损失而设计的。来自研究的证据表明,通过根据当地环境条件进行校准,R/USLE模型可以普遍使用。然而,
它们很简单,需要更少的数据和计算时间;它们不是事件响应型的,测量的是冲沟和河岸侵蚀造成的土壤损失。但是,
RUSLE 模型的参数计算过程与 USLE 模型不同。本研究还描述了 SLEMSA 模型将土壤侵蚀因素视为一个单独的实体,
并受到 LS 因素的高度影响。WEPP 模型能够在短时间内估计土壤损失和异地侵蚀率,但是;它只适用于个别山坡。
因此,根据这次审查的结果,提出了以下建议供进一步研究,以填补空白;R/USLE 参数的升级,SLMSA 地形子模
型的修改,以及 WEPP 模型中基本参数的修订,以估计大型集水区的侵蚀。

关键词


土壤流失;基于事件的侵蚀;侵蚀模型;模型校准;农业生产力

全文:

PDF


参考


[1] Ganasri, B. P., and Ramesh, H. 2016. Assessment

of soil erosion by RUSLE model using remote sensing and

GIS-A case study of Nethravathi Basin. Geoscience Frontiers,

7 (6); 953-961.

[2] Dawit, K. 2020. Participatory Identification of Major

Natural Resource Constraints and Potentials Under Koka_xfffe_Lewate Watershed, Tembaro Woreda, Kambata Tambaro Zone

of Southern Ethiopia. International Journal of Energy and

Environmental Science, 5 (1); 1-6.

[3] Mohammed, S., Alsafadi, K., Talukdar, S., Kiwan,

S., Hennawi, S., Alshihabi, O., Sharaf, M., and Harsanyie, E.

2020. Estimation of soil erosion risk in southern part of Syria

by using RUSLE integrating geo informatics approach. Remote

Sensing Applications: Society and Environment, 20; 1-14.

[4] Han, J., Wenyan Ge, Hei, Z., Cong, C., Ma, C., Xie, M.,

Liu, B., Wei Feng, F. W., and Juying Jiao. 2020. Agricultural

land use and management weaken the soil erosion induced by

extreme rainstorms. Agriculture, Ecosystems & Environment,

301.

[5] Phinzi, K., Abriha, D., Bertalan, L., Holb, I., and

Szabó, S. 2020. Machine Learning for Gully Feature

Extraction Based on a Pan-Sharpened Multispectral Image:

Multiclass vs. Binary Approach. International Journal of Geo_xfffe_Information, 9; 252.

[6] Zhao, J., Yang, Z., and Govers, G. 2019. Soil and

water conservation measures reduce soil and water losses

in China but not down to background levels: evidence from

erosion plot data. Geoderma, 337; 729-741.

[7] Karydas, C. G., Panagos, P., and Gitas, I. Z. 2014.

A classification of water erosion models according to their

geospatial characteristics. International Journal of Digital

Earth, 7 (3); 229-250.

[8] Wischmeier, W. H., and Smith, D. D. 1965. Predicting

Rainfall-Erosion Losses from Cropland East of the Rocky

Mountains: Guide for Selection of Practices for Soil and Water

Conservation. In USDA Agricultural Handbook (p. 282).

[9] Wischmeier, W. H., and Smith, D. D. 1978. Predicting

Soil Erosion Losses: A Guide to Conservation Planning. In

USDA Agricultural Handbook (p. 537).

[10] Renard, K. G., Foster, G. R., Weesies, G. A.,

and Porter, J. P. 1997. RUSLE: revised universal soil loss

equation. J. Soil Water Conserv, 46; 30-33.

[11] Nearing, M. A., Foster, G. R., Lane, L. J., and

Finkner, S. C. 1989. A process-based soil erosion model

for USDA-water erosion prediction project technology.

Transactions of the ASAE, 32; 1587-1593.

[12] Morgan, R. C. P. 1995. Soil Erosion and

Conservation (p. 198). Longman Group UK Limited, London.

[13] Elwell, H. A. 1978. Modelling Soil losses in Southern

Africa. J. Agric. Eng. Res. 23; 117-127.

[14] Knisel, W. 1980. CREAMS, a field scale model for

chemicals, runoff, and erosion from agricultural management

systems, US Department of Agriculture Research Service

Report No. 26.

[15] Beasley, D. B., Huggins, L. F., and Munke, E. J.

1980. ANSWERS - a model for watershed planning. Trans

Am Soc. Agric Eng., 23; 938-944.

[16] Granata, F., Gargano, R., and Marinis, G. 2016.

Support Vector Regression for Rainfall- Runoff Modeling in

Urban Drainage: A Comparison with the EPA’s Storm Water

Management Model. Water, 8 (3); 13.

[17] Beven, K. J. 2012. Rainfall-Runoff Modelling. In

The Primer(2nd ed.). Wiley-Blackwell.

[18] Igwe, P. U., Onuigbo, A. A., Chinedu, O. C., Ezeaku,

I. I., and Muoneke, M. M. 2017. Soil Erosion: A Review of

Models and Applications. International Journal of Advanced

Engineering Research and Science, 14 (12); 138-150.

[19] Sitterson, J., Knightes, C., Parmar, R., Wolfe, K.,

Muche, M., and Avant, B. 2017. An Overview of Rainfall_xfffe_Runoff Model Types.

[20] Chandramohan, T., Venkatesh, B., and Balchand, A.

N. 2015. Evaluation of Three Soil Erosion Models for Small

Watershed. International Conference on Water Resources,

Coastal and Ocean Engineering (ICWRCOE) Aquatic

Procedia, 4; 1227-1234.

[21] Morgan, R. P. C. 2005. Soil Erosion and

Conservation, 3rd Edition. Blackwell Publishing, Malden,

U.S.A.

[22] Devi, G. K., Ganasri, B. P., and Dwarakish, G. S.

2015. A Review on Hydrological Models. Aquatic Procedia, 4,

1001-1007.

[23] Mateus, A., and Salumbo, D. O. 2020. A Review of

Soil Erosion Estimation Methods. Agricultural Sciences, 11;

667-691.

[24] Atinafu, D. 2015. Surface Water Potential

Assessment and Demand Scenario Analysis in Omo Gibe

River Basin. MSc Thesis, Addis Ababa University, Addis

Ababa, Ethiopia.

[25] Merritt, W. S., Letcher, R. A., and Jakeman, A. J.

2003. A Review of Erosion and Sediment Transport Model.

Environmental Modelling and Software, 18; 761-799.

[26] Alewell, C., Borrelli, P., Meusburger, K., and

Panagos, P. 2019. Using the USLE: Chances, challenges and

limitations of soil erosion modeling. International Soil and

Water Conservation Research, 7 (3); 203-225.

[27] Gia, T. P., Degener, J., and Kappas, M. 2018.

Integrated universal soil loss equation (USLE) and

Geographical Information System (GIS) for soil erosion

estimation in A Sap basin: Central Vietnam. International Soil

and Water Conservation Research, 6 (2); 99-110.

[28] Millward, A. A., and Ersey, J. E. 1999. Adapting

the RUSLE to model soil erosion potential in a mountainous

tropical watershed. Journal of Catena, 38 (2); 109-129.

[29] Balabathina, V. N., Raju, R. P., Mulualem, W., and

Tadele, G. 2020. Estimation of soil loss using remote sensing

and GIS-based universal soil loss equation in northern

catchment of Lake Tana Sub-basin, Upper Blue Nile Basin,

Northwest Ethiopia. Environmental Systems Research, 7 (35);

1-32.

[30] Jazouli, A. El, Barakat, A., Ghafiri, A., Moutaki, S.

El, and Ettaqy, A. 2017. Soil erosion modeled with USLE,

GIS, and remote sensing: a case study of Ikkour watershed in

Middle Atlas (Morocco). Geoscience Letters, 4 (25); 1-12.

[31] Bagarello, V., Di Stefano, C., Ferro, V., and

Pampalone, V. 2017. Predicting maximum annual values of

event soil loss by USLE-type models, Catena. 155; 10-19.

[32] Stolpe, N. B. 2005. A comparison of the RUSLE,

EPIC and WEPP erosion models as calibrated to climate and

soil of south-central Chile. Acta Agriculturae Scandinavica

Section B Soil and Plant Science, 55 (1); 2-8.

[33] Arnhold, S., Lindner, S., Lee, B., Martin, E.,

Kettering, J., and Nguyen, T. T. 2014. Conventional and

organic farming: Soil erosion and conservation potential for

row crop cultivation. Geoderma, 219; 89-105.

[34] Auerswald, K., Kainz, M., and Fiener, P. 2003.

Soil erosion potential of organic versus conventional farming

evaluated by USLE modeling of cropping statistics for

agricultural districts in Bavaria. Soil Use and Management, 19

(4); 305-311.

[35] Hajigholizadeh, M., Melesse, A. M., and Fuentes,

H. R. 2018. Erosion and Sediment Transport Modelling

in Shallow Waters: A Review on Approaches, Models and

Applications. International Journal of Environmental Research

and Public Health, 15; 518.

[36] Jaramillo, F. 2007. Estimating and Modelling Soil

Loss and Sediment Yield in the Maracas-St. Joseph River

Catchment with Empirical Models (RUSLE and MUSLE) and

a Physically Based Model (Erosion 3D). Masters thesis, McGill

University, Montreal.

[37] SWCS (Soil and Water Conservation Society) 1995.

Revised Universal Soil Loss Equation, User Guide (1.04). Soil

and Water Conservation Society, Ankeny.

[38] Renard, K. G., Laflen, J. M., Foster, G. R., and

Mccool, D. K. 1994. The Revised Soil Loss Equation. pp.

105-126. In Lal, R. (ed.), Soil Erosion Research Methods.

Conservation Society, Ankeny.

[39] Brown, L. C., and Foster, G. R. (1987). Storm

erosivity using idealized intensity distributions. Transactions

of the ASAE, 30 (2), 379-0386.

[40] Penning de, V., F. W. T., Agus, F., and Kerr, J.

1998. Soil Erosion at multiple scales: Principles and methods

for assessing causes and impacts. CABI Publishing, United

Kingdom.

[41] McCool, D. K., Foster, G. R., Renard, K. G., Yoder,

D. C., and Weeisies, G. A. pp. 11-15. 1995. The Revised

Universal Soil Loss Equation. In: Department of Defense/

Interagency Workshop on Technologies to Address Soil

Erosion on Department of Defense Lands San Antonio, TX.

[42] Tiwari, A. K., Risse, L. M., and Nearing, M. A.

(2000). Evaluation of WEPP and its comparison with USLE

and RUSLE. Transactions of the ASAE, 43 (5), 1129.

[43] Breetzke, G. D., Koomen, E., and Critchley, W. R.

S. 2013. GIS-Assisted Modelling of Soil Erosion in a South

African Catchment: Evaluating the USLE and SLEMSA

Approach. Water Resources Planning, Development and

Management, 54-71.

[44] Igwe, C. A., Akamigbo, F. O. R., and Mbagwu, J. S. C.

1999. Application of SLEMSA and USLE erosion models for

potential erosion hazard mapping in South-eastern Nigeria.

International Agrophysic, 13 (1); 41-48.

[45] Bobe, B. 2004. Evaluation of soil erosion in the

Harerge region of Ethiopia using soil loss models, rainfall

simulation and field trials. Doctoral Dissertation, University of

Pretoria, South Africa.

[46] Elwell, H. A. 1976. Soil Loss Estimator for Southern

Africa. Natal Agricultural Research Bulletin No 7, Department

of Agricultural Technical Services, Natal.

[47] Elwell, H. 1980. A Soil Loss Estimator Technique

for Southern Africa. pp. 281-292. In: Morgan, R. (eds.), Soil

Loss Conservation, Problems and Prospects. Wiley, Hoboken.

[48] Ajon, A. T., Obi, M. E., and Agber, P. 2018.

Prediction of Soil Loss using SLEMSA and USLE Erosion

Models for an Agricultural Field in Makurdi, Benue State,

Nigeria.International Journal of Innovative Agriculture &

Biology Research, 6 (3); 21-30.

[49] Kinnell, P. I. A. 2017. A comparison of the abilities

of the USLE-M, RUSLE2 and WEPP to model event erosion

from bare fallow areas. Science of the Total Environment,

596–597; 32-42.

[50] Laflen, J. M., Lane, L. J., and Foster, G. R. 1991.

WEPP: a new generation of erosion prediction technology. J.

Soil Water Conserv, 46 (1); 34-38.

[51] Flanagan, D. C., and Nearing, M. A. 1995. USDAWaterErosion Prediction Project: hillslope profile and

watershed model documentation. Nserl Rep 10, 1-123.

[52] Foster, G. R., and Meyer, L. D. 1972. A Closed

Form Soil Erosion Equation for Upland Erosion. In: Shen,

H. W. (eds.),Sedimentation. Colorado State University, Ft

Collins,Colorado, 12.

[53] Han, F., Ren, L., Zhang, X., and Li, Z. 2016. The

WEPP Model Application in a Small Watershed in Loess

Plateau. PLoS ONE, 11 (3); 1-11.

[54] Meinen, B. U., and Robinson, D. T. 2021.

Agricultural erosion modelling: Evaluating USLE and WEPP

field-scale erosion estimates using UAV time-series data.

Environmental Modelling and Software, 137.




DOI: http://dx.doi.org/10.12361/2661-3824-04-12-118854

Refbacks

  • 当前没有refback。