首页出版说明中文期刊中文图书环宇英文官网付款页面

检查钢筋混凝土结构的开裂和破碎行为的有限元建模策略

金 城嘉, 亚历 山大
瑞典建筑与土木工程系

摘要


钢筋混凝土(RC)结构的非线性有限元(FE)分析的特点是众多建模选项和输入参数。为了准确模拟涉
及混凝土受拉开裂和受压压碎的非线性RC行为,从业者对关键建模问题做出不同的选择,例如,定义混凝土本构
关系,指定混凝土和钢筋之间的粘结,以及解决相关问题收敛困难和网格敏感性。因此,必须批判性地审查常见的
建模选择,并制定具有一致性、可靠性和可比性的稳健建模策略。本文基于关键建模选择的参数研究提出了一种建
模策略和实用建议,用于RC结构的非线性有限元分析。所提出的建模策略旨在为RC构件的弯曲响应提供可靠的预
测,重点是混凝土开裂行为和破碎破坏,这是更复杂建模案例的基础,例如,与纤维增强聚合物(FRP)层压板粘
合的RC梁。此外,本文全面描述了所提出的建模策略的实施过程,重点关注RC结构的关键建模问题。所提出的策
略通过对在四点弯曲中测试的RC梁进行有限元分析来证明——一根RC梁作为参考,一根梁在其拱腹处外部粘合有
碳 FRP(CFRP)层压板。模拟结果与关于荷载-变形关系、开裂、混凝土压碎引起的弯曲破坏以及中间裂缝引发的
CFRP剥离的实验测量结果非常吻合。本文提出的建模策略和建议通常适用于RC结构的非线性有限元分析。

关键词


钢筋混凝土;有限元分析;裂纹带;应变定位;峰后软化;粘塑性正则化;收敛;网格灵敏度;粘滑;弯 曲行为

全文:

PDF


参考


[1]Wells, G.N.; Sluys, L.J. A new method for modelling

cohesive cracks using finite elements. Int. J. Numer. Methods

Eng. 2001, 50, 2667–2682.

[2]Bažant, Z.P.; Oh, B.H. Crack band theory for fracture

of concrete. Mater. Struct. 1983, 16, 155–177.

[3]Rots, J.G.; Nauta, P.; Kuster, G.M.A.; Blaauwendraad,

J. Smeared crack approach and fracture localization in

concrete. HERON 1985, 30, 48.

[4]CEB-FIP. CEB-FIP Model Code 1990: Design Code;

Thomas Telford: Lausanne, Switzerland, 1993.

[5]Fib. Fib Model Code for Concrete Structures 2010;

International Federation for Structural Concrete: Lausanne,

Switzerland, 2013; ISBN 978-3-433-03061-5.

[6]American Concrete Institute. ACI 318-14 Building

Code Requirements for Structural Concrete and Commentary

(Metric); American Concrete Institute: Farmington Hills, MI,

USA, 2014.

[7]Van Mier, J.G.M. Strain-Softening of Concrete under

Multiaxial Loading Conditions. Ph.D. Thesis, Eindhoven

University of Technology, Eindhoven, The Netherlands, 20

November 1984.

[8]Bažant, Z.P. Identification of strain-softening

constitutive relation from uniaxial tests by series coupling

model for localization. Cem. Concr. Res. 1989, 19, 973–977.

[9]Jansen, D.C.; Shah, S.P. Effect of length on

compressive strain softening of concrete. J. Eng. Mech. 1997,

123, 25–35.

[10]Zandi Hanjari, K.; Kettil, P.; Lundgren, K. Modelling

the structural behaviour of frost-damaged reinforced concrete

structures. Struct. Infrastruct. Eng. 2013, 9, 416–431.

[11]Thorenfeldt, E.; Tomaszewicz, A.; Jensen, J.J.

Mechanical properties of high-strength concrete and

applications in design. In Proceedings of the Symposium on

Utilization of High-Strength Concrete, Stavanger, Norway,

15–18 June 1987; pp. 149–159.

[12]Alfarah, B.; López-Almansa, F.; Oller, S. New

methodology for calculating damage variables evolution in

plastic damage model for RC structures. Eng. Struct. 2017,

132, 70–86.




DOI: http://dx.doi.org/10.12361/2661-3824-04-02-62

Refbacks

  • 当前没有refback。