首页出版说明中文期刊中文图书环宇英文官网付款页面

原油含水率监测及其原因和处理方法

阿巴 斯·
伊拉克巴士拉石油公司

摘要


本研究的目的是展示石油化合物的石油降解细菌及其转化为最终产物(二氧化碳和水)的效果,以及它们对
油乳液形成和原油含水率增加的贡献。这项研究的目的是阐明将原油中的含水量增加到允许的限度的问题,以及即
使石油运输到达客户手中,这一增加的持续性。该研究采用了对预计出现的重要原因的调查和诊断,并通过对从石
油隔离站(生产)和 PS1 仓库提取的原油样本的实验室检查结果。结果显示了对降解碳氢化合物的特定类型细菌的
监测。根据可用的环境条件变量(水分、矿物盐、温度),鉴定和分离了两种类型的细菌(假单胞菌、放线菌)作
为催化剂,以提高微生物消耗碳氢化合物的速率。这被称为生物降解。对两种类型的细菌采用比较方法,目的是通
过计算这两种类型细菌产生的水量来获得消耗效率(分析碳氢化合物),同时保持添加了杀生物剂的原油的控制模型。
这两种类型的细菌分离物的结果表明它们具有消耗碳氢化合物的能力。测试结果表明,其中没有任何细菌生长,水
含量也没有任何增加,而大多数样品的测试结果显示,两种类型的细菌都污染了油。假单胞菌的消耗率比放线菌高,
因此水含量的百分比增加更多。除含水量增加外,原油的规格还存在其他损害,表现为微生物分解导致原油密度(API)
降低。根据获得的数据,我们得出结论,油中含水量的增加是由于存在降解油的细菌,证据表明未受污染的油的含
水量没有任何变化或增加。

关键词


生物降解;应用程序编程接口;含水量;生物杀灭剂;假单胞菌;放线菌属

全文:

PDF


参考


[ 1 ] D o r o t a W o l i c k a a n d A n d r z e j B o r k o w s k i ,

Microorganisms and Crude Oil, Introduction to Enhanced

Oil Recovery (EOR)Processes and Bioremediation of Oil_xfffe_Contaminated Sites, Edited by Laura Romero-Zerón ISBN:

978-953-51-0629-6. 2012. Poland.

[2] Michel Mogot, Bernard Ollivier & Bharat K. C Patel.

Microbiology of petroleum reservoirs, Kluwer, Academic, 77:

103, 116, 2000, Netherland.

[3] Friedrich Widdel and Ralf Rabus. Anaerobic

biodegradation of saturated and aromatic hydrocarbons, ©

Elsevier Science Ltd.. 12: 259–276, 2001, Germany.

[4] George V. Chilingarian,, Microbial enhanced oil

recovery, © Amsterdam. New York, Elsevier, Amsterdam, vol

22 1996, U.S.A.

[5] IP Standard Test Methods for analysis and testing of

petroleum and related

products, and British Standard Parts. vol 3, 2022, U.K.

[6] J. B. Davis. Petroleum microbiology, Elsevier

Publishing. 2007, New York. USA.

[7] Jonathan D. van Hamme,, Recent Advances in

petroleum Microbiology, American society for microbiology,

2003 U.S.A.

[8] John A. Veil, Markus G. Puder Markus Elcock Robert

J. Redweik, Jr, A White Paper Describing Produced. Water

from Production of Crude Oil Natural Gas, and Coal Bed

Methane. National Energy Technology Laboratory, 2004, USA.

[9] Heinz Wilkes, Andrea Vieth. Biodegraded oil

reservoirs to show that this concept is applicable to a broad

range of hydrocarbon and non-hydrocarbon constituents of

petroleum, © AAPG Calgary, Alberta, June 16-19, 2005.

Pakastan.

[10] Wei E. Huang. Rapid characterization of microbial

biodegradation. Pathways by FT-IR spectroscopy, Journal of

Microbiological Methods 67 (2): 273-80 (2006). U.K.

[11] Feitkenhauer H, Muller R, Marakl, Degradation of

polycyclic aromatic hydrocarbons and long chain alkanes at

60-70 C by Thermus and Bacillus spp Biodegradation; 14;

367 -372 doi; 10.1023/A;1027357615649. 15 (1): 77, 2003,

USA.

[12] Widdel, 2001, Anaerobic biodegradation of saturated

and aromatic hydrocarbons, © Elsevier Science Ltd. All rights

reserved. Volume 12, Issue 3, Pages 259-276. 1 June 2001,

UK.

[13] M. A. Rasheed, D. J. Patil and A. M. Dayal.

Microbial Techniques for Hydrocarbon Exploration, DOI:

10.5772/50885, Edited by Vladimir Kutcherov and Anton

Kolesnikov 16th, 2011, UK.

[14] Noah yossef, Mostfa Elshahed and Michael 2009,

Advances in applied microbiology © Elsevier Science

academic press Burlington: Academic Press, Vol 66 pp. 141-

251. ISBN: 978-0-12-374788-4 © Copyright 2009 Elsevier

Inc. Academic Press. 2009, UK.

[15] Punniyakotti Elumalai, Punniyakotti Parthipan,

Bacillus and Geobacillus on crude oil degradation and bio

corrosion in oil reservoir environment Author information

Article notes copyright and License information Disclaimer,

Published online 2019 Feb 12. doi: 10.1007/s13205-019-

1604-0, 2019, USA.




DOI: http://dx.doi.org/10.12361/2661-3808-04-04-115721

Refbacks

  • 当前没有refback。