公路施工用高强度螺钉断裂分析
摘要
产过程的控制可能并不总是足以确保道路安全的方法。螺杆材料加工的逆向排查和控制似乎是螺杆在运行过程中出
现任何故障时最重要的程序之一。本文主要针对M直径27×3、柄长64mm的10.9级高强度螺钉的失效分析。提到和
研究的螺钉被用作公路框架结构中的紧固件。本文主要从材料微纯度、材料显微组织、表面处理以及化学成分等方
面对破碎螺杆的材料进行了分析。评估基于光学显微镜、扫描电子显微镜和能量色散光谱的研究。由于使用扫描电
子显微镜的方法从断口分析得到的断面的微观形态和材料对比信息,还获得了重要的知识和结果。在生产高强度螺
钉的情况下,回火代表着决定性或关键的热处理过程,因为给定的过程可以确保降低硬度,同时保持材料所需的延
展性,这也是体现在断裂面强度和微观形貌的提高上。从微纯度方面来看,材料中未发现临界尺寸或分布的夹杂物,
参考捷克标准ČSN ISO 4967(420471)。微观结构对应于回火马氏体,但断裂螺钉的断裂表面基于晶间微观机制,这
对于给定类型的组件是不希望的。结合从螺钉边缘到中心区域的HV1(载荷1kg时的维氏硬度)的测量,分析揭示
了高强度螺钉在热处理中的显着缺陷。
关键词
全文:
PDF参考
[1]Technical and Quality Conditions Part 20, Steel
Structures, Distler-Šuppa. [(accessed on 3 January 2021)];2014
:39. Available online:
[2]Ptáček L. Material Science II. 2rd ed. Academic
Publishing CERM; Brno, Czech Republic: 2002. p. 392.
[3]Hrivňák I. Fractography. MTF STU; Bratislava,
Slovakia: 2009. p. 93.
[4]Hunkel M., Surm H., Steinbacher M. Handbook of
Thermal Analysis and Calorimetry. Elsevier; Amsterdam, The
Netherlands: 2018. p. 860.
[5]Barnyi I., Krbaťa M., Majerík J., Mikušová I. Effect
of deformation parameters on microstructure evolution and
properties of 33NiCrMoV15 steel. IOP Conf. Ser. Mater. Sci.
Eng. 2020;776:776. doi: 10.1088/1757-899x/776/1/012001.
[6]Krbata M., Majerík J., Barényi I., Eckert
M. Experimental determination of continuous cooling
t r a n s f o r m a t i o n d i a g r a m f o r h i g h s t r e n g t h s t e e l
OCHN3MFA. IOP Conf. Ser. Mater. Sci. Eng. 2020;776:776.
doi: 10.1088/1757-899x/776/1/012095.
[7]Krbata M., Eckert M., Krizan D., Barenyi I., Mikušová
I. Hot Deformation Process Analysis and Modelling of
X153CrMoV12 Steel. Metals. 2019;9:1125. doi: 10.3390/
met9101125.
[8]Barényi I., Majerík J., Krbata M. Structure
evolution of 33NiCrMoV15 steel after its processing by various
quenching conditions. Proc. Struc. Integr. 2019;23:547–552.
doi: 10.1016/j.prostr.2020.01.143.
[9]Reza T., Abbas N., Reza S. Drawing of CCCT diagrams
by static deformation and consideration deformation effect on
martensite and bainite transformation in NiCrMoV steel. J.
Mater. Process. Technol. 2008;196:321–331. doi: 10.1016/
j.jmatprotec.2007.05.059.
[10]García-Mateo C., Caballero F.G., Capdevila
C., De Andrés C.G. Estimation of dislocation density
in bainitic microstructures using high-resolution
dilatometry. Scr. Mater. 2009;61:855–858. doi: 10.1016/
j.scriptamat.2009.07.013.
[11]Pickering E.J., Collins J., Stark A., Connor
L.D., Kiely A.A., Stone H.J. In situ observations
of continuous cooling transformations in low alloy
steels. Mater. Charact. 2020;165:110355. doi: 10.1016/
j.matchar.2020.110355.
[12]Wang Y.F., Li X.F., Song X.L., Dou D.-Y.,
Shen L.-M., Gong J.-M. Failure analysis of prestressed high strength steel bars used in a wind turbine
foundation: Experimental and FE simulation. Mater.
Corros. 2015;67:406–419. doi: 10.1002/maco.201508506.
DOI: http://dx.doi.org/10.12361/2661-3808-04-01-26
Refbacks
- 当前没有refback。