首页出版说明中文期刊中文图书环宇英文官网付款页面

B11、B12 和 B13 等平面团簇在中性和带电状态下的相对稳定性

Levan Chkhartishvili
Department of Engineering Physics, Georgian Technical University, Tbilisi, Georgia.

摘要


目的:在双原子模型中,研究了最丰富的硼簇 B11、B12 和 B13 在中性、正性和负性带电状态下平面结构的相对稳定性。方法:根据具体的(每原子)结合能标准进行实验。结果:发现 B12+(6.49 eV)是最稳定的硼簇,而B11 - + B13+(5.83 eV)中性对预计将为富硼固体提供更好的消融通道。结论:所得结果可用于生产基于硼簇的纳米结构涂层材料,这些材料具有超强的性能,如轻度、硬度、导电性、化学惰性、中子吸收等,使其在防止裂纹、磨损、腐蚀、中子和电磁辐射等方面特别有效。

关键词


团簇;电荷状态;比结合能;二原子模型;相对稳定性;基于团簇的涂层材料;硼

全文:

PDF


参考


[1] Becker, R., Chkhartishvili, L., Martin, P. (2015) Boron, the New Graphene? Vacuum Technology & Coating, 16, 38–44.

[2] Becker, R., Chkhartishvili, L., Martin, P. (2015) Tribological Applications for Boron. Vacuum Technology & Coating, 16, 36–41.

[3] Chkhartishvili, L. (2011) Micro- and Nanostructured Boron. In: Perkins, G.L., Ed., Compounds, Production and Application. Nova Science Publishers, New York, 221–294.

[4] Chkhartishvili, L. (2011) Nanoboron (An Overview). Nano Studies, 3, 227–314.

[5] Chkhartishvili, L. (2016) All-boron Nanostructures. In: Kharisov, B.I., Kharissova, O.V., Ortiz–Mendez, U., Eds., CRC Concise Encyclopedia of Nanotechnology. CRC Press, Boca Raton,

–69.

[6] Albert, B., Hillebrecht, H. (2009) Boron: Elementary Challenge for Experimenters and Theoreticians. Angewandte Chemie International Edition, 48, 8640–8668.

[7] Boustani, I. (2011) Towards Novel Boron Nanostructural Materials. In: Springborg, M., Ed., Chemical Modelling: Applications and Theory. Royal Society of Chemistry, Cambridge, 1–44.

[8] Fermi, E. (1966) Molecules, Crystals, and Quantum Statistics. W. A. Benjamin INC, New York.

[9] Novikova, S.I. (1974) Thermal Expansion of Solids. Nauka, Moscow.

[10] Slutsker, A.I., Gilyarov, V.L., Luk’yanenko, A.S. (2006) Energy Features of an Adiabatically Loaded Anharmonic Oscillator. Physics of the Solid State, 48, 1947–1953.

[11] Chkhartishvili, L., Gabunia, D., Tsagareishvili, O. and Gachechiladze, A. (2004) Estimation of Isotopic Composition Effect on Substance Melting Temperature. Bulletin of the Georgian National Academy of Sciences, 170, 530–532.

[12] Chkhartishvili, L.S., Gabunia, D.L., Tsagareishvili, O.A. (2007) Estimation of the Isotopic Effect on the Melting Parameters of Boron. Inorganic Materials, 43, 594–596.

[13] Chkhartishvili, L.S., Gabunia, D.L., Tsagareishvili, O.A. (2008) Effect of the Isotopic Composition on the Lattice Parameter of Boron. Powder Metallurgy and Metal Ceramics,

, 616–621.

[14] Gabunia, D., Tsagareishvili, O., Chkhartishvili, L. and Gabunia, L. (2009) Isotopic Composition Dependences of Lattice Constant and Thermal Expansion of β-rhombohedral

Boron. Journal of Physics: Conference Series, 176, 1–10.

[15] Chkhartishvili, L., Tsagareishvili, O., Gabunia, D. (2014) Isotopic Expansion of Boron. Journal of Metallurgical Engineering, 3, 97–103.

[16] Chkhartishvili, L. (2009) On Quasi-classical Estimations of Boron Nanotubes Ground-state Parameters. Journal of Physics: Conference Series, 176, 1–9.

[17] Chkhartishvili, L. (2009) Molar Binding Energy of the Boron Nanosystems. In: Konuk, A., Kurama, H., Ak, H., Iphar, M., Eds., Proceedings of the 4th International Boron Symposium. Osmangazi University, Ankara, 153–160.

[18] Chkhartishvili, L. (2011) Nanotubular Boron: Ground-state Estimates. In: Chikoidze, E., Tchelidze, T., Eds., New Developments in Materials Science. Nova Science Publishers, New York, 67–80.

[19] Oganov, A.R., Chen, J.H., Gatti, C., Ma, Y.Z., et al. (2009) Ionic Highpressure Form of Elemental Boron. Nature, 457, 863–867.

[20] Chkhartishvili, L., Becker, R. (2015) Effective Atomic Charges and Dipole Moment of Small Boron Clusters. Proceedings of the ICANM 2015. IAEMM, Ottawa, 130–147.

[21] Becker, R., Chkhartishvili, L. (2015) Dipole Moment of Quasi-planar Boron Clusters. Nano Studies, 11, 29–48.

[22] Chkhartishvili, L., Becker, R., Avci, R. (2015) Relative Stability of Boron Quasi-planar Clusters. In: Darsavelidze, G., Guldamashvili, A., Chedia, R., Sichinava, A., et al., Eds., Proceedings of the International Conference “Advanced Materials & Technologies”. Universal, Tbilisi,

–46.

[23] Chkhartishvili, L. (2016) Small Elemental Clusters in Pair Interaction Approximation. Proceedings of the ICANM 2016. IAEMM, Montreal, 128–132.

[24] Chkhartishvili, L. (2017) Planar Clusters of Identical Atoms in Equilibrium: 1. Diatomic Model Approach. American Journal of Nano Research & Applications, 5, 1–4.

[25] Chkhartishvili, L. (2016) Quasi-planar Elemental Clusters in Pair Interactions Approximation. Open Physics, 14, 617–620.

[26] Chkhartishvili, L. (2017) Boron Quasi-planar Clusters. In: Pogrebnjak, A.D., Ed., A Mini-review on Diatomic Approach. Proceedings of the IEEE 7th International Conference on Nanomaterials: Applications & Properties (NAP—2017), Part 4, Track: Nanomaterials for Electronics, Spintronics and Photonics. Sumy State University, Sumy, 1–5.

[27] Chkhartishvili, L., Lezhava, D., Tsagareishvili, O. (2000) Quasi-classical Determination of Electronic Energies and Vibration Frequencies in Boron Compounds. Journal of Solid State Chemistry, 154, 148–152.

[28] Chkhartishvili, L., Mamisashvili, N., Maisuradze, N. (2015) Single-parameter Model for Multi-walled Geometry of Nanotubular Boron. Solid State Sciences, 47, 61–67.

[29] Hayes, W.M. (2013) Handbook of Chemistry and Physics. 94th Edition, CRC Press, Boca Raton, 10–147 & 10–197.

[30] Bambakidis, G., Wagner, R.P. (1981) Electronic Structure and Binding Energy of the Icosahedral Boron Cluster B12. Journal of Physics and Chemistry of Solids, 42, 1023–1025.

[31] Kawai, R., Weare, J.H. (1991) Instability of the B12 Icosahedral Cluster: Rearrangement to a Lower Energy Structure. The Journal of Chemical Physics, 95, 1151–1159.

[32] Boustani, I. (1995) Structure and Stability of Small Boron Clusters. A Density Functional Theoretical Study. Chemical Physics Letters, 240, 135–140.

[33] Boustani, I. (1997) Systematic Ab Initio Investigation of Bare Boron Clusters: Determination of the Geometry and Electronic Structures of Bn (n = 2–14). Physical Review B,

, 16426–16438.

[34] Zhai, H.J., Kiran, B., Li, J. and Wang, L.S. (2003) Hydrocarbon Analogues of Boron Clusters—Planarity, Aromaticity and Antiaromaticity. Nature Materials, 2, 827–833.

[35] Atis, M., Ozdogan, C., Guvenc, Z.B. (2007) Structure and Energetic of Bn (n = 2–12) Clusters: Electronic Structure Calculations. International Journal of Quantum Chemistry,

, 729–744.

[36] Kiran, B., Kumar, G.G., Nguyen, M.T., Kandalam, A.K., et al. (2009) Origin of the Unusual Stability of B12 and B13+ Clusters. Inorganic Chemistry, 48, 9965–9967.

[37] Bhattacharyya, P., Boustani, I., Shukla, A. (2018) First Principles Electronic Structure Study of B12 Isomers: Jahn–Teller Distortion Flattens the Icosahedron into a Disc. arXiv:1802.01072v1 [physics.atm-clus] 4 Feb 2018, 1–32.


Refbacks

  • 当前没有refback。