首页出版说明中文期刊中文图书环宇英文官网付款页面

碳钢 A106 Gr B 在含胺-CO2 的溶液中的腐蚀率

Yuli Panca Asmara1, Tedi Kurniawan2, Kushendarsyah Saptaji3
1、英迪国际大学工程与工料测量学院
2、卡塔尔社区大学工程技术系
3、桑波纳大学工程与技术学院

摘要


二氧化碳(CO2)是石油和天然气工业中的一种腐蚀性元素。为了防止 CO2 对碳钢管道的腐蚀,通常使用胺
基溶剂和苛性碱溶液。因此,胺基溶剂和苛性钠溶液在减少腐蚀风险方面的效果成为决定碳钢管道使用寿命的关键参
数。在这项研究中,研究了碳钢 A106 Gr B 在含饱和 CO2 气体和苛性碱溶液的胺溶液中的腐蚀率。实验是在静态条件下
进行的,使用线性极化电阻(LPR)技术来测量腐蚀率(根据 ASTM G 5-94)。实验发现,胺基溶液中的腐蚀率显著。
不知何故,在含有饱和二氧化碳气体的胺基溶剂中,腐蚀率增加到 200%。温度从室温增加到 50℃,也增加了腐蚀率。
同时,在胺基溶液中加入苛性碱也降低了碳钢的腐蚀率。

关键词


CO2 腐蚀;碳钢;胺类溶剂;苛性碱溶液;腐蚀率

全文:

PDF


参考


[1] Asma, B., Asmara, Y., & Mokhtar, C. (2011). Study on the Effect of Surface Finish on Corrosion of

Carbon Steel in CO2 Environment. Journal of Applied

Sciences, 11. https://doi.org/10.3923/jas.2011.2053.2057

[2] Asmara, Y P, & Ismail, M. C. (2012). Efficient

design of response surface experiment for corrosion

prediction in CO2 environments. Corrosion Engineering, Science and Technology, 47(1), 10–18.

https://doi.org/10.1179/1743278211Y.0000000013

[3] Asmara, Y P, & Kurniawan, T. (2018). Corrosion Prediction for Corrosion Rate of Carbon Steel

in Oil and Gas Environment: A Review. Indonesian

Journal of Science and Technology; Vol 3, No 1 (2018):

IJoST: Volume 3, Issue 1, 2018. https://doi.org/10.17509/ijost.v3i1.10808

[4] Asmara, Yuli Panca, Ma’arof, M. I. N., &

Sutjipto, A. G. E. (2020). Preferential Weld corrosion of

carbon steel as Effect of Caustic in amine-CO2 contained

solutions. INTI Journal, 2020: 055. Retrieved from

http://eprints.intimal.edu.my/1474/

[5] Asmara, Yuli Panca, Siregar, J. P., Cionita, T., & Alias, J. (2015). Electrochemical Behaviour of High

Stress Steel (AISI 4340) in CO2 Environments with the

Presence of H2 Gas. Applied Mechanics and Materials, 695, 98–101. https://doi.org/10.4028/www.scientific.net/AMM.695.98

[6] Caldona, E. B., Wipf, D. O., & Smith, D. W. (2021). Characterization of a tetrafunctional epoxy-amine

coating for corrosion protection of mild steel. Progress in

Organic Coatings, 151, 106045. https://doi.org/https://doi.org/10.1016/j.porgcoat.2020.10

6045

[7] G1-90, A. (1999). Standard Practice for

Preparing, Cleaning, and Evaluating Corrosion Test

Specimens. In ASTM International. [8] G5-94, A. (2011). Standard Reference Test

Method for Making Potentiostatic and Potentiodynamic

Anodic Polarization Measurements. In ASTM

International. [9] Hjelmaas, S., Storheim, E., Flø, N. E., Thorjussen, E. S., Morken, A. K., Faramarzi, L., …

Hamborg, E. S. (2017). Results from MEA Amine Plant

Corrosion Processes at the CO2 Technology Centre

Mongstad. Energy Procedia, 114, 1166–1178. https://doi.org/https://doi.org/10.1016/j.egypro.2017.03.1

280

[10] Lee, K. L. (2004). A mechanistic modeling of

CO₂ corrosion of mild steel in the presence of H₂S. Ohio

University. [11] Li, S., Zeng, Z., Harris, M. A., Sánchez, L. J., & Cong, H. (2019). CO2 Corrosion of Low Carbon Steel

Under the Joint Effects of Time-Temperature-Salt

Concentration. Frontiers in Materials, 6, 10. Retrieved

from

https://www.frontiersin.org/article/10.3389/fmats.2019.00

[12] Nešić, S. (2007). Key issues related to

modelling of internal corrosion of oil and gas

pipelines—A review. Corrosion Science, 49(12), 4308–4338. https://doi.org/https://doi.org/10.1016/j.corsci.2007.06.00

6

[13] Ooi, Z. L., Tan, P. Y., Tan, L. S., & Yeap, S. P. (2020). Amine-based solvent for CO2 absorption and its

impact on carbon steel corrosion: A perspective review. Chinese Journal of Chemical Engineering, 28(5), 1357–1367. https://doi.org/https://doi.org/10.1016/j.cjche.2020.02.029

[14] Rashid, K. H., & Khadom, A. A. (2020). 3-Methoxypropyl-amine as corrosion inhibitor for X80

steel in simulated saline water. Journal of Molecular Liquids, 319, 114326. https://doi.org/https://doi.org/10.1016/j.molliq.2020.1143

26

[15] Sun, W., & Nesic, S. (2007). A Mechanistic

Model of H2S Corrosion of Mild Steel. NACE -

International Corrosion Conference Series. [16] Videm, K., & Dugstad, A. (1989). Corrosion of

carbon steel in an aqueous carbon dioxide environment. Retrieved from https://www.osti.gov/biblio/5890061




DOI: http://dx.doi.org/10.12361/2661-3689-04-10-111078

Refbacks

  • 当前没有refback。