碳钢 A106 Gr B 在含胺-CO2 的溶液中的腐蚀率
摘要
基溶剂和苛性碱溶液。因此,胺基溶剂和苛性钠溶液在减少腐蚀风险方面的效果成为决定碳钢管道使用寿命的关键参
数。在这项研究中,研究了碳钢 A106 Gr B 在含饱和 CO2 气体和苛性碱溶液的胺溶液中的腐蚀率。实验是在静态条件下
进行的,使用线性极化电阻(LPR)技术来测量腐蚀率(根据 ASTM G 5-94)。实验发现,胺基溶液中的腐蚀率显著。
不知何故,在含有饱和二氧化碳气体的胺基溶剂中,腐蚀率增加到 200%。温度从室温增加到 50℃,也增加了腐蚀率。
同时,在胺基溶液中加入苛性碱也降低了碳钢的腐蚀率。
关键词
全文:
PDF参考
[1] Asma, B., Asmara, Y., & Mokhtar, C. (2011). Study on the Effect of Surface Finish on Corrosion of
Carbon Steel in CO2 Environment. Journal of Applied
Sciences, 11. https://doi.org/10.3923/jas.2011.2053.2057
[2] Asmara, Y P, & Ismail, M. C. (2012). Efficient
design of response surface experiment for corrosion
prediction in CO2 environments. Corrosion Engineering, Science and Technology, 47(1), 10–18.
https://doi.org/10.1179/1743278211Y.0000000013
[3] Asmara, Y P, & Kurniawan, T. (2018). Corrosion Prediction for Corrosion Rate of Carbon Steel
in Oil and Gas Environment: A Review. Indonesian
Journal of Science and Technology; Vol 3, No 1 (2018):
IJoST: Volume 3, Issue 1, 2018. https://doi.org/10.17509/ijost.v3i1.10808
[4] Asmara, Yuli Panca, Ma’arof, M. I. N., &
Sutjipto, A. G. E. (2020). Preferential Weld corrosion of
carbon steel as Effect of Caustic in amine-CO2 contained
solutions. INTI Journal, 2020: 055. Retrieved from
http://eprints.intimal.edu.my/1474/
[5] Asmara, Yuli Panca, Siregar, J. P., Cionita, T., & Alias, J. (2015). Electrochemical Behaviour of High
Stress Steel (AISI 4340) in CO2 Environments with the
Presence of H2 Gas. Applied Mechanics and Materials, 695, 98–101. https://doi.org/10.4028/www.scientific.net/AMM.695.98
[6] Caldona, E. B., Wipf, D. O., & Smith, D. W. (2021). Characterization of a tetrafunctional epoxy-amine
coating for corrosion protection of mild steel. Progress in
Organic Coatings, 151, 106045. https://doi.org/https://doi.org/10.1016/j.porgcoat.2020.10
6045
[7] G1-90, A. (1999). Standard Practice for
Preparing, Cleaning, and Evaluating Corrosion Test
Specimens. In ASTM International. [8] G5-94, A. (2011). Standard Reference Test
Method for Making Potentiostatic and Potentiodynamic
Anodic Polarization Measurements. In ASTM
International. [9] Hjelmaas, S., Storheim, E., Flø, N. E., Thorjussen, E. S., Morken, A. K., Faramarzi, L., …
Hamborg, E. S. (2017). Results from MEA Amine Plant
Corrosion Processes at the CO2 Technology Centre
Mongstad. Energy Procedia, 114, 1166–1178. https://doi.org/https://doi.org/10.1016/j.egypro.2017.03.1
280
[10] Lee, K. L. (2004). A mechanistic modeling of
CO₂ corrosion of mild steel in the presence of H₂S. Ohio
University. [11] Li, S., Zeng, Z., Harris, M. A., Sánchez, L. J., & Cong, H. (2019). CO2 Corrosion of Low Carbon Steel
Under the Joint Effects of Time-Temperature-Salt
Concentration. Frontiers in Materials, 6, 10. Retrieved
from
https://www.frontiersin.org/article/10.3389/fmats.2019.00
[12] Nešić, S. (2007). Key issues related to
modelling of internal corrosion of oil and gas
pipelines—A review. Corrosion Science, 49(12), 4308–4338. https://doi.org/https://doi.org/10.1016/j.corsci.2007.06.00
6
[13] Ooi, Z. L., Tan, P. Y., Tan, L. S., & Yeap, S. P. (2020). Amine-based solvent for CO2 absorption and its
impact on carbon steel corrosion: A perspective review. Chinese Journal of Chemical Engineering, 28(5), 1357–1367. https://doi.org/https://doi.org/10.1016/j.cjche.2020.02.029
[14] Rashid, K. H., & Khadom, A. A. (2020). 3-Methoxypropyl-amine as corrosion inhibitor for X80
steel in simulated saline water. Journal of Molecular Liquids, 319, 114326. https://doi.org/https://doi.org/10.1016/j.molliq.2020.1143
26
[15] Sun, W., & Nesic, S. (2007). A Mechanistic
Model of H2S Corrosion of Mild Steel. NACE -
International Corrosion Conference Series. [16] Videm, K., & Dugstad, A. (1989). Corrosion of
carbon steel in an aqueous carbon dioxide environment. Retrieved from https://www.osti.gov/biblio/5890061
DOI: http://dx.doi.org/10.12361/2661-3689-04-10-111078
Refbacks
- 当前没有refback。