金刚石纳米颗粒对铬涂层微观结构、硬度和耐蚀性的影 响
摘要
电流密度、电沉积时间和金刚石纳米颗粒在镀铬电解液中的浓度对镀铬层微观结构、相组成、显微硬度和耐蚀性的
影响。使用 X 射线衍射(XRD)和扫描电子显微镜 - 能量分散 X 射线光谱(SEM-EDS)技术检查了复合涂层(铬和
金刚石纳米颗粒)的相和化学成分。用金相显微镜和显微硬度计检查了显微组织和显微硬度。使用重量法研究了在
3.5wt%NaCl 溶液中的耐腐蚀性。铬涂层与钢基体之间的结合具有扩散特性。在金刚石纳米颗粒浓度为 25g/l 或更高时,
出现单独的不规则形状形成的子层。这些结构的形成仅取决于金刚石纳米颗粒的浓度,而不受其他电沉积参数的影响。
随着电解液中金刚石纳米颗粒浓度的增加,铬涂层沉积速率增加,涂层厚度也相应增加。这种增加是没有纳米金刚
石的铬涂层厚度的两倍多。与未改性铬涂层相比,复合涂层的显微硬度也有所提高。随着金刚石纳米颗粒浓度的增加,
与单铬涂层相比,显微硬度提高了 2 倍,耐蚀性提高了 5 倍。其他电镀参数的值是恒定的。
关键词
全文:
PDF参考
[1] Yordanov S., Stambolova I., Lakov L., Blaskov V.,
Jivov B., Alexandrova M., Valkanov S., Eliyas A., Solgel SiO2 coatings doped with Nd2O3, Bulgarian Chemical
Communications, Special Issue A, vol. 49, (2017), 29-32.
[2] Shenderova O., Dieter M., Nanocrystalline Diamonds,
Willian Andrew Publishing, Norwich, N.Y., USA, (2006),
335-342.
[3] Dolmatov V., Burkat G., Myllymäki V. and Vehanen
A.,Electrochemical chromium-diamond coating, Journal of
Superhard Materials, vol. 37, (2015), 82–100.
[4] Isakov V. P., Lyamkin A. I., Nikitin D. N., Salimova A.
S. and Solntcev A. V., Structure and properties of chromium
composite electrochemical coatings, Physical Chemistry of
Surfaces and Protection of Materials (Fizikohimia Poverchnosti
i Zaschtita Materialov), vol.46, No 5, (2010), 506- 509.
[5] Dolmatov V. Y., Fujimura T., Barkat G. K. and
Veretennikova M. V., Preparation of wear-resistant chromium
coatings using different types on nanodiamonds, Powder
Metallurgy and Metal Ceramics, vol. 42, No 11-12, (2003),
587-591.
[6] Mandlich N. V. and Dennis J. K., Codeposition of
nanodiamonds with chromium, Metal Finishing, June, (2001),
117-121.
[7] Vityas P. A., Zhornik V. I., Shtemplyak R. G. and
Kovaleva S. A., Influence of nanosized carbon additives on
the structure, formation and tribological behavior of galvanic
chrome coatings, Friction and Wear (Trenie i Iznos), vol. 30,
No 2, (2009), 132-139.
[8] Tikhonov K. L., Barkat G. K., Dolmatov V. Y. and
Orlova E. A., Use of diamond stock in chromium plating,
Russian Journal of Applied Chemistry, vol. 80, No 7, (2007),
1082- 1086.
[9] Barkat G. K., Dolmatov V. Y, Osawa E. and Orlova E.
A., A study of properties of chromium diamonds coatings using
nanodiamonds from various producers, Super Hard Materials
(Sverkhtverdye Materialy), vol. 32, No 2, (2010), 43-59.
[10] Petkov V., Valov R., Witkowska M., Madej M.,
Cempura G., Sułowski M., Sintered steels coated with a
chromium layer doped with diamond nanoparticles, Arch.
Metall. Mater. vol.64, No 4, (2019), 1633-1638.
[11] Nguyen V. H., Hoang T. N., NguyenN. T., Kwon S.
C., Joo M. K. and Lee Y., Cr/nanodiamonds composite plating
with cobalt cation additive, Metals Society of China, 19, (2009),
975-978.
[12] Wang L., Gao Y., Xue Q., Liu H. and Xu T., Effects
of nano-diamond particles on the structure and tribological
property of Ni-matrix nanocomposite coatings, Materials
Science and Engineering, A 390 (2005), 313- 318.
[13] Addel A., Hard and corrosion resistant
nanocomposite coating for Al alloy, Materials Science and
Engineering, A, 474 (2008), 181-187.
[14] Gidikova N., Sulowski M., Madej M., Valov R.,
Petkov V., Mechanical properties of composite coatings of
chromium and nanodiamonds on aluminum, MATEC Web of
Conferences, 145, 05012, (2018), 1-2.
[15] Krueger A., The structure and reactivity of nanoscale
diamonds, Journal of Materials Chemistry, 18, (2008), 1485-
1492.
[16] Raty J. Y., Galli G., Bosted C., van Bauren T. W.
and Terminello L. Y., Quantum confinement and fullerene like
surface reconstruction in nanodiamonds, Phys.Rev.Lett., 90.
037401, (2003).
DOI: http://dx.doi.org/10.12361/2661-3689-04-12-117215
Refbacks
- 当前没有refback。