主要粮食作物耐氮低应力育种研究进展
摘要
物会将氮截留在土壤中,使植物无法获得氮。另一方面,低投入农业是指以较少的投入维持的系统,导致系统紧张,
通常是由氮和磷酸盐短缺或缺水造成的,这会导致产量损失。在发达国家,它经常与有机农业有关,并被用作有机
农业的同义词。一种具有耐受性的植物在疾病发生后再也无法抵御或控制疾病的传播。因此,迫切需要找到增加粮
食生产的方法,特别是在世界上最贫穷的地区。在当代的改良尝试中,基于更高产量表现的基因型选择通常是在每
种类型的胁迫的最佳条件下进行的。为了解决这些情况,必须创建着眼于潜在低产品种的育种课程。在这些课程中,
选择了具有更好抗逆性的品种,如延迟叶片衰老、改善营养经济性、当地环境适应性、持续产量和抗病性,从而提
高了低投入系统的可持续性。因此,来自世界各地的研究人员正在投入大量精力来创造改良品种和杂交种。可以通
过引进、选择、杂交和突变技术创造出非生物和耐生物的作物品种。使用系谱、改良的大宗系谱和另一种培养方法
来生产能够耐受盐度的品种。为了通过传统育种或生物技术方法创造出优良的基因型,遗传学家必须了解作物中生
物和生物耐受性的遗传基础。由于作物科学和遗传技术的快速进步,育种家必须不断更新他们的知识和能力,以保
持最新。
关键词
全文:
PDF参考
[1] Abay, F.; Bjorn tad, A. Specific adaptation of barley
varieties in different locations in Ethiopia. Euphytica 2009,
167, 181-195.
[2] Alam, A. K. M. M., Ahmed, S., Begum, M. And
Sultan, M. K. (2008). Heterosis and Combining.
[3] Ali, A. J., Xu, J. L., Ismail, A. M., Fu, B.
Y., Vijayakumar, C. H. M., Gao, Y. M., Domingo, J.,
Maghirang, R., Yu, S. B., Gregorio, G., Yanaghihara, S.,
Cohen, M., Carmen, B., Mackill, D. and Li, Z. K., 2006.
Hidden diversity for abiotic and biotic stress tolerances in
the primary gene pool of rice revealed by a large backcross
breeding program. Field Crops Res., 97: 66–76.
[4] Andersen, J. R. and Lübberstedt, T., 2003.
Functional markers in plants. Trends in plant science, 8 (11),
pp. 554-560.
[5] Andrews, R. W., Pollard, A. and Pearce, J. M., 2013.
The effects of snowfall on solar photovoltaic performance.
Solar Energy, 92, pp. 84-97.
[6] Ashraf, M. and McNeilly, T., 1988. Variability in
salt tolerance of nine spring wheat cultivars. Journal of
Agronomy and Crop Science, 160 (1), pp. 14-21.
[7] Atkinson, J. A., L. U. Wingen, M. Griffiths, M. P.
Pound, O.Gaju, M. J. Foulkes, J. Le Gouis, S. Griffiths, M.
J. Bennett, J. King, and D. M. Wells, 2015: Phenotyping
pipeline reveals major seedling root growth QTL in
hexaploid wheat. J. Exp. Bot. 66, 2283—2292.
[8] Badu-Apraku, B., Fakorede, M. A. B., Oyekunle, M.
And Akinwale, R. O. (2011b). Selection and exploitation of
heterosis in crops. An International Symposium, Mexico. Pp
11.
[9] Badu-Apraku, B., Oyekunle, M., Fakorede, M. A.
B., Vroh, I., O Akinwale, R. and Aderounmu, M., 2013.
Combining ability, heterotic patterns and genetic diversity of
extra-early yellow inbreds under contrasting environments.
Euphytica, 192 (3), pp. 413-433.
[10] Baenziger, M. And Lafitte, H. R. (1997). Efficiency
of secondary traits for improving maize for low-nitrogen
target environments. Crop Science 37: 1110–1117.
[11] Baker, H. G., Opler, P. A. and Baker, I., 1978. A
comparison of the amino acid complements of floral and
extra floral nectars. Botanical Gazette, 139 (3), pp. 322-332.
[12] Banziger, M. and Diallo, A. O., 2004. Progress
in developing drought and N stress tolerant maize cultivars
for eastern and southern Africa. In Integrated approaches
to higher maize productivity in the new millennium.
Proceedings of the 7th eastern and southern Africa regional
maize conference, CIMMYT/KARI, Nairobi, Kenya (pp.
189-194).
[13] Bänziger, M., Betrán, F. J. and Lafitte, H. R.,
1997. Efficiency of high-nitrogen selection environments for
improving maize for low-nitrogen target environments. Crop
Science, 37 (4), pp. 1103-1109.
[14] Edmeades, G. O., Bolaños, J., Chapman, S. C.,
Lafitte, H. R. and Bänziger, M., 1999. Selection improves
drought tolerance in tropical maize populations: I. Gains in
biomass, grain yield, and harvest index. Crop science, 39 (5),
pp. 1306-1315.
[15] Bänziger, M. and Long, J., 2000. The potential for
increasing the iron and zinc density of maize through plant_xfffe_breeding. Food and Nutrition Bulletin, 21 (4), pp. 397-400.
[16] Barraclough, P. B., Lopez-Bellido, R. and
Hawkesford, M. J., 2014. Genotypic variation in the uptake,
partitioning and remobilization of nitrogen during grain_xfffe_filling in wheat. Field Crops Research, 156, pp. 242-248.
[17] Beatty, I. D. and Gerace, W. J., 2009.
Technologyenhanced formative assessment: A research_xfffe_based pedagogy for teaching science with classroom
response technology. Journal of Science Education and
Technology, 18 (2), pp. 146-162.
[18] Hemmerle, H., Burger, H. J., Below, P., Schubert,
G., Rippel, R., Schindler, P. W., Paulus, E. and Herling, A.
W., 1997. Chlorogenic acid and synthetic chlorogenic acid
derivatives: novel inhibitors of hepatic glucose-6-phosphate
translocase. Journal of medicinal chemistry, 40 (2), pp. 137-
145.
[19] Betrán, F. J., Ribaut, J. M., Beck, D. and De León,
D. G., 2003. Genetic diversity, specific combining ability,
and heterosis in tropical maize under stress and nonstress
environments. Crop Science, 43 (3), pp. 797-806.
[20] Beyene, Y., Katoh, S., WoldeGabriel, G., Hart, W.
K., Uto, K., Sudo, M., Kondo, M., Hyodo, M., Renne, P.
R., Suwa, G. and Asfaw, B., 2013. The characteristics and
chronology of the earliest Acheulean at Konso, Ethiopia.
Proceedings of the National Academy of Sciences, 110 (5),
pp. 1584-1591.
[21] Bharath, S. T., Jayaraman, S. and Nagar, V., 2013.
Exit as governance: An empirical analysis. The Journal of
Finance, 68 (6), pp. 2515-2547.
[22] Blum, L. and Stell, G., 1979. Polydisperse systems.
I. Scattering function for polydisperse fluids of hard or
permeable spheres. The Journal of Chemical Physics, 71 (1),
pp. 42-46.
[23] Cañas, A. I. and Camarero, S., 2010. Laccases
and their natural mediators: biotechnological tools for
sustainable ecofriendly processes. Biotechnology advances,
28 (6), pp. 694-705.
[24] Berry, P., Foulkes, J., Carvalho, P., Teakle, G.,
White, P., White, C. and Roques, S., 2011. Breeding oilseed
rape with a low requirement for nitrogen fertiliser. HGCA
Project Report, (479).
[25] Chang, M. M., Leeman, S. E. and NIALL, H. D.,
1971. Amino-acid sequence of substance P. Nature New
Biology, 232 (29), pp. 86-87.
[26] Craswell, E. T. and Godwin, D. C., 1984. The
efficiency of nitrogen fertilizers applied to cereals in
different climates. Advances in plant nutrition (USA).
[27] Cui, J., Chi, X. Z., Ding, H. T., Lin, L. T.,
Yang, Z. C. and Yan, G. Z., 2009. Transient response and
stability of the AGCPI closed-loop controlled MEMS
vibratory gyroscopes. Journal of Micromechanics and
Microengineering, 19 (12), p. 125015.
[28] Dawson, J. C., Huggins, D. R. and Jones, S. S.,
2008. Characterizing nitrogen use efficiency in natural and
agricultural ecosystems to improve the performance of
cereal crops in low-input and organic agricultural systems.
Field Crops Research, 107 (2), pp. 89-101.
[29] De Fraiture, C., Molden, D. and Wichelns,
D., 2010. Investing in water for food, ecosystems, and
livelihoods: An overview of the comprehensive assessment
of water management in agriculture. Agricultural Water
Management, 97 (4), pp. 495-501.
[30] Derera, J., Tongoona, P., Vivek, B. S. and Laing, M.
D., 2008. Gene action controlling grain yield and secondary
traits in southern African maize hybrids under drought and
nondrought environments. Euphytica, 162 (3), pp. 411-422.
[31] Dewey, O. R., Hartley, G. S. and MacLauchlan, J.
W. G., 1962. External leaf waxes and their modification by
roottreatment of plants with trichloroacetate. Proceedings of
the Royal Society of London. Series B. Biological Sciences,
155(961), pp. 532-550.
[32] Meena, H. P., Bainsla, N. K. and Yadav, D. K.,
2016. Breeding for abiotic stress tolerance in crop plants.
Recent advances in plant stress physiology. Daya Publishing
House, New Delhi, pp. 329-378.
[33] Raju, P. S., Clark, R. B., Ellis, J. R., Duncan, R. R.
and Maranville, J. W., 1990. Benefit and cost analysis and
phosphorus efficiency of VA mycorrhizal fungi colonizations
with sorghum (Sorghum bicolor) genotypes grown at varied
phosphorus levels. In Plant Nutrition—Physiology and
Applications (pp. 165-170). Springer, Dordrecht.
[34] Duvick, D. N., 1997. What is yield. Developing
drought and low N-tolerant maize. CIMMYT, El Batan,
Mexico, pp. 332-335.
[35] Wheeler, D. M., Edmeades, D. C., Christie, R. A.
and Gardner, R., 1992. Effect of aluminium on the growth of
34 plant species: a summary of results obtained in low ionic
strength solution culture. Plant and Soil, 146 (1), pp. 61-66.
[36] Fageria, N. K., Baligar, V. C. and Zobel, R. W.,
2007. Yield, nutrient uptake, and soil chemical properties as
influenced by liming and boron application in common bean
in a no‐tillage system. Communications in soil science and
plant analysis, 38 (11-12), pp. 1637-1653.
[37] Hill, W. G. and Mackay, T. F., 2004. DS Falconer
and Introduction to quantitative genetics. Genetics, 167 (4),
pp. 1529-1536.
[38] Cheverud, J. M., 1984. Quantitative genetics and
developmental constraints on evolution by selection. Journal
of theoretical biology, 110 (2), pp. 155-171.
[39] Fess, T. L., Kotcon, J. B. and Benedito, V. A.,
2011. Crop breeding for low input agriculture: a sustainable
response to feed a growing world population. Sustainability,
3 (10), pp. 1742-1772.
[40] Fisher, S. S., McGreevy, M., Humphries, J. and
Robinett, W., 1987, January. Virtual environment display
system. In Proceedings of the 1986 workshop on Interactive
3D graphics(pp. 77-87).
[41] Foulkes, M. J., Hawkesford, M. J., Barraclough, P.
B., Holdsworth, M. J., Kerr, S., Kightley, S. and Shewry, P.
R., 2009. Identifying traits to improve the nitrogen economy
of wheat: Recent advances and future prospects. Field Crops
Research, 114 (3), pp. 329-342.
[42] Gaju, O., Allard, V., Martre, P., Le Gouis, J.,
Moreau, D., Bogard, M., Hubbart, S. and Foulkes, M. J.,
2014. Nitrogen partitioning and remobilization in relation to
leaf senescence, grain yield and grain nitrogen concentration
in wheat cultivars. Field Crops Research, 155, pp. 213-223.
[43] Gallais, A. and Hirel, B., 2004. An approach to
the genetics of nitrogen use efficiency in maize. Journal of
experimental botany, 55 (396), pp. 295-306.
[44] Gethi, J. G. and Smith, M. E., 2004. Genetic
responses of single crosses of maize to Striga hermonthica
(Del.) Benth. and Striga asiatica (L.) Kuntze. Crop science,
44 (6), pp. 2068-2077.
[45] Godfray, H. C. J., Beddington, J. R., Crute, I. R.,
Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson,
S., Thomas, S. M. and Toulmin, C., 2010. Food security: the
challenge of feeding 9 billion people. science, 327 (5967),
pp. 812-818.
[46] Pradheep, K., Gomez, S. M. and Kalamani,
A., 2003. Possibilities of Broadening the Plant Wealth of
Horticulture from Existing. Asian Journal of Plant Science,
2 (9), pp. 719-730.
[47] Good, A. G., Shrawat, A. K. and Muench, D.
G., 2004. Can less yield more? Is reducing nutrient input
into the environment compatible with maintaining crop
production? Trends in plant science, 9 (12), pp. 597-605.
[48] Goodnight, T. M., 1997. Perceptions and attitudes
of selected swine producers and non-swine producers
concerning certain social and environmental issues (Doctoral
dissertation, Oklahoma State University).
[49] Gregorio, G. B. and Senadhira, D., 1993. Genetic
analysis of salinity tolerance in rice (Oryza sativa L.).
Theoretical and applied Genetics, 86 (2), pp. 333-338.
[50] Griffing, B. R. U. C. E., 1956. Concept of general
and specific combining ability in relation to diallel crossing
systems. Australian journal of biological sciences, 9 (4), pp.
463-493.
[51] Guei, R. G. and Wassom, C. E., 1992. Inheritance
of some drought adaptive traits in maize. I: Interrelationships
between yield, flowering, and ears per plant. Maydica, 37 (2),
pp. 157-164.
[52] Waddell, J. T., Gupta, S. C., Moncrief, J. F.,
Rosen, C. J. and Steele, D. D., 1999. Irrigation and nitrogen
management effects on potato yield, tuber quality, and
nitrogen uptake. Agronomy Journal, 91 (6), pp. 991-997.
[53] Purba, J., Sharma, R. K., Jat, M. L., Thind, H.
S., Gupta, R. K., Chaudhary, O. P., Chandna, P., Khurana,
H. S., Kumar, A., Uppal, H. S. and Uppal, R. K., 2015.
Site-specific fertilizer nitrogen management in irrigated
transplanted rice (Oryza sativa) using an optical sensor.
Precision Agriculture, 16 (4), pp. 455-475.
[54] Hallauer, A. R., Russell, W. A. and Lamkey, K. R.,
1988. Corn breeding. Corn and corn improvement, 18, pp.
463-564.
[55] Kopke, U., Athmann, M., Han, E. and Kautz,
T., 2015. Optimising cropping techniques for nutrient
and environmental management in organic agriculture.
Sustainable Agriculture Research, 4 (526-2016-37934).
[56] Bruun, S., Luxhøi, J., Magid, J., de Neergaard,
A. and Jensen, L. S., 2006. A nitrogen mineralization
model based on relationships for gross mineralization and
immobilization. Soil Biology and Biochemistry, 38 (9), pp.
2712-2721.
[57] Hochholdinger, F., and R. Tuberosa, 2009: Genetic
and genomic dissection of maize root development and
architecture. Curr. Opin. Plant Biol. 12, 172—177.
[58] Cai, C., Hu, S., Guo, J., Shi, Y., Xie, G. J. and
Yuan, Z., 2015. Nitrate reduction by denitrifying anaerobic
methane oxidizing microorganisms can reach a practically
useful rate. Water Research, 87, pp. 211-217.
[59] Huggins, D. R. and Pan, W. L., 2003. Key
indicators for assessing nitrogen use efficiency in cereal_xfffe_based agroecosystems. Journal of crop production, 8 (1-2),
pp. 157-185.
[60] Ju XT, Xing GX, Chen XP, Zhang SL, Zhang
LJ, Liu XJ, Cui ZL, Christie P, Zhang FS (2009) Reducing
environmental risk by improving N management in intensive
Chinese agricultural systems. Proc Natl Acad Sci USA 106:
3041–3046.
[61] Ju, C., Buresh, R. J., Wang, Z., Zhang, H., Liu, L.,
Yang, J., et al. (2015). Root and shoot traits for rice varieties
with higher grain yield and higher nitrogen use efficiency
at lower nitrogen rates application. Field Crops Res. 175,
47–55. doi: 10.1016/j.fcr.2015.02.007.
[62] Kamoshita, A., Rodriguez, R., Yamauchi, A. and
Wade, L., 2004. Genotypic variation in response of rainfed
lowland rice to prolonged drought and rewatering. Plant
Production Science, 7 (4), pp. 406-420.
[63] Kanbar, A., Toorchi, M. and Shashidhar, H.,
2009. Relationship between root and yield morphological
characters in rainfed low land rice (Oryza sativa L.). Cereal
Research Communications, 37 (2), pp. 261-268.
[64] Kempthorne, O., 1957. An introduction to genetic
statistics.
[65] Kochian, L. V., 2012. Rooting for more
phosphorus. Nature, 488 (7412), pp. 466-467.
[66] Thind, H. S., Kumar, A., Gupta, R. K., Kaul, A.
and Vashistha, M., 2012. Fixed-time adjustable dose site_xfffe_specific fertilizer nitrogen management in transplanted
irrigated rice (Oryza sativa L.) in South Asia. Field Crops
Research, 126, pp. 63-69.
[67] Lafitte, H. R. and Edmeades, G. O., 1994.
Improvement for tolerance to low soil nitrogen in tropical
maize I. Selection criteria. Field Crops Research, 39 (1), pp.
1-14.
[68] Lam, H. M., Wong, P., Chan, H. K., Yam, K.
M., Chen, L., Chow, C. M. and Coruzzi, G. M., 2003.
Overexpression of the ASN1 gene enhances nitrogen status
in seeds of Arabidopsis. Plant physiology, 132 (2), pp. 926-
935.
[69] Hardgrove, S. J. and Livesley, S. J., 2016.
Applying spent coffee grounds directly to urban agriculture
soils greatly reduces plant growth. Urban forestry & urban
greening, 18, pp. 1-8.
[70] Lian, X., Xing, Y., Yan, H., Xu, C., Li, X. and
Zhang, Q., 2005. QTLs for low nitrogen tolerance at
seedling stage identified using a recombinant inbred line
population derived from an elite rice hybrid. Theoretical and
Applied Genetics, 112 (1), pp. 85-96.
[71] Gilbody, S., Lewis, S. and Lightfoot, T., 2007.
Methylenetetrahydrofolate reductase (MTHFR) genetic
polymorphisms and psychiatric disorders: a HuGE review.
American journal of epidemiology, 165 (1), pp. 1-13.
[72] Liu, M., Liu, R. and Chen, W., 2013. Graphene
wrapped Cu2O nanocubes: non-enzymatic electrochemical
sensors for the detection of glucose and hydrogen peroxide
with enhanced stability. Biosensors and Bioelectronics, 45,
pp. 206-212.
[73] Maiti, R. K., Amaya, L. E. D., Cardona, S. I.,
Dimas, A. M. O., de la rosaibarra, M. And Castillo, H. D.,
1996. Genotypic variability in maize cultivars (Zea mays L.)
For resistance to drought and salinity at the seedling stage.
Journal of Plant Physiology, 148: 741-744.
[74] Maiti, R. K., dela Rosa-Ibarra, M. And Sandoval, N.
D., 1994. Genotypic variability in glossy sorghum lines for
resistance to drought, salinity and temperature stress at the
seedling stage. Journal of Plant Physiology, 143: 211-244.
[75] Makumbi, D., Betrán, J. F., Bänziger, M. and
Ribaut, J. M., 2011. Combining ability, heterosis and genetic
diversity in tropical maize (Zea mays L.) under stress and
non-stress conditions. Euphytica, 180 (2), pp. 143-162.
[76] Mallik, S., 1995. Rice germplasm evaluation
and improvement for stagnant flooding. KT, editor.
Rainfed lowland rice: agricultural research for high-risk
environments, Manila (Philip pines): International Rice
Research Institute. p 97-109.
[77] Mallik, S., Mandal, B. K., Sen, S. N. and
Sarkarung, S., 2002. Shuttle Breeding: an effective tool for
rice varietal improvement in rainfed lowland ecosystem in
eastern India. Curr. Sci., 83 (9): 1097-1102.
[78] Manavalan, L. K., T. Musket, and H. T. Nguyen,
2011: Natural genetic variation for root traits among
diversity lines of maize (Zea mays L.). Maydica 56, 1-10.
[79] Manske, G. G. B., I. J. Ortoz-Monasterio, and P. L.
G. Vlek. 2001. Techniques for measuring genetic diversity in
roots. p. 208–218. In: M. P. Reynolds, J. I. Ortiz-Monastoio,
and A. MacNab (eds), Application of physiology in wheat
breeding. CIMMYT, Mexico, DF.
[80] Masclaux-Daubresse, C., Reisdorf-Cren, M.,
Pageau, K., Lelandais, M., Grandjean, O., Kronenberger,
J., Valadier, M. H., Feraud, M., Jouglet, T. and Suzuki, A.,
2006. Glutamine synthetase-glutamate synthase pathway
and glutamate dehydrogenase play distinct roles in the sink_xfffe_source nitrogen cycle in tobacco. Plant physiology, 140 (2),
pp. 444-456.
[81] Masclaux-Daubresse, C., Daniel-Vedele, F.,
Dechorgnat, J., Chardon, F., Gaufichon, L. and Suzuki, A.,
2010. Nitrogen uptake, assimilation and remobilization in
plants: challenges for sustainable and productive agriculture.
Annals of botany, 105 (7), pp. 1141-1157.
[82] Meseka, S. K., Menkir, A. And Ibrahim, A. E. S.
(2006). Genetic analysis of performance of Nitrogen use in
maize. Pp. 316-319.
[83] Muellner, A. E., Mascher, F., Schneider, D., Ittu,
G., Toncea, I., Rolland, B. and Löschenberger, F., 2014.
Refining breeding methods for organic and low-input
agriculture: analysis of an international winter wheat ring
test. Euphytica, 199 (1), pp. 81-95.
[84] Murphy, K., Lammer, D., Lyon, S., Carter, B.
and Jones, S. S., 2005. Breeding for organic and low-input
farming systems: An evolutionary–participatory breeding
method for inbred cereal grains. Renewable Agriculture and
Food Systems, 20 (1), pp. 48-55.
[85] Murphy, K. M., Campbell, K. G., Lyon, S. R. and
Jones, S. S., 2007. Evidence of varietal adaptation to organic
farming systems. Field Crops Research, 102 (3), pp. 172-
177.
[86] Obara, M., W. Tamura, T. Ebitani, M. Yano, T. Sato
and T. Yamaya. 2010. Fine mapping of qrl6. 1, a major QTL
for root length of rice seedlings grown under a wide range of
NH4+concentrations in hydroponic conditions. Theor. Appl.
Genet., 21: 535-547.
[87] Obara, M., T. Takeda, T. Hayakawa and T. Yamaya.
2011. Mapping quantitative trait loci controlling root length
in rice seedlings grown with low or sufficient supply using
backcross recombinant lines derived from a cross between
Oryza sativa L. And Oryza glaberrima Steud. Soil Sci. And
Plant Nutr., 57: 80-92.
[88] Ogawa, S., M. O. Valencia, M. Ishitani and M.
G. Selvaraj. 2014. Root system architecture variation
in response to different NH4+ concentrations and its
association with nitrogen deficient tolerance traits in rice.
Acta Phys. Plantarum., 36: 2361-2372.
[89] Paez-Garcia, A., Motes, C. M., Scheible, W. R.,
Chen, R., Blancaflor, E. B. and Monteros, M. J., 2015. Root
traits and phenotyping strategies for plant improvement.
Plants, 4 (2), pp. 334-355.
[90] Paroda, R. S. and Arora, R. K., 1986. and their
Conservation: Indian Perspective. Conservation for
Productive Agriculture: Commemorative Volume Released
on the Eightieth Birthday of Dr. BP Pal, p. 73.
[91] Quarrie, s. a., 1996. New molecular tools to
improve the efficiency of breeding for increased drought
resistance. Plant growth regulators, 20: 167-178.
[92] Ramage, R. T., 1980. Genetic methods to
breed salt tolerance in plants. In Genetic engineering of
osmoregulation (pp. 311-318). Springer, Boston, MA.
[93] Raun, W. R. and Johnson, G. V., 1999. Improving
nitrogen use efficiency for cereal production. Agronomy
journal, 91 (3), pp. 357-363.
[94] Rebouillat, P., Vidal, R., Cravedi, J. P., Taupier_xfffe_Letage, B., Debrauwer, L., Gamet-Payrastre, L., Touvier,
M., Hercberg, S., Lairon, D., Baudry, J. and Kesse-Guyot,
E., 2021. Estimated dietary pesticide exposure from plant_xfffe_based foods using NMF-derived profiles in a large sample
of French adults. European Journal of Nutrition, 60 (3), pp.
1475-1488.
[95] Rengel, Z. And P. Marschner. 2005. Nutrient
availability and management in the rhizosphere: exploiting
genotypicdifferences. New Phytol., 168: 305-312.
[96] Saito, R., Cranmer, B. K., Tessari, J. D., Larsson,
L., Mehaffy, J. M., Keefe, T. J. and Reynolds, S. J., 2009.
Recombinant factor C (rFC) assay and gas chromatography/
mass spectrometry (GC/MS) analysis of endotoxin
variability in four agricultural dusts. Annals of occupational
hygiene, 53 (7), pp. 713-722.
[97] Scharf, P. C., Schmidt, J. P., Kitchen, N. R.,
Sudduth, K. A., Hong, S. Y., Lory, J. A. and Davis, J. G.,
2002. Remote sensing for nitrogen management. Journal of
soil and water conservation, 57 (6), pp. 518-524.
[98] Nobuhiro, T., Shimizu, A., Kabeya, N.,
Tsuboyama, Y., Kubota, T., Abe, T., Araki, M., Tamai, K.,
Chann, S. and Keth, N., 2007. Year-round observation
of evapotranspiration in an evergreen broadleaf forest in
Cambodia. In Forest environments in the Mekong river
basin (pp. 75-86). Springer, Tokyo.
[99] Shrawat, A. K., R. T. Carroll, M. DePauw, G.
Taylor, and A. G. Good. 2008. Genetic engineering of
improved nitrogen use efficiency in rice by the tissue specific
expression of alanine amino transferase. Plant Biotechnol. J.
6: 722–732.
[100] Shull, G. H. “Beginning of the heterosis concept
in heterosis. lowa State.” (1952): 419-428.
[101] Singh, K. K., Talat, M. and Hasan, S. H., 2006.
Removal of lead from aqueous solutions by agricultural
waste maize bran. Bioresource Technology, 97 (16), pp.
2124-2130.
[102] Singh, RK., Gregrio, G. B. and Ismail, A. M.,
2008. Breeding rice varieties with tolerance to salt stress. J.
Indian Soc. Coastal Agric. Res., 26 (1): 16-21.
[103] Singh, B. D. (2003). Plant Breeding, Principles
and Methods. Kalyani Publishers. New Delhi.
[104] Smith, S. And I. D. Smet. 2012. Root system
architecture: insights from Arabidopsis and cereal crops.
Philos. Trans. R. Soc. Lond. B. Biol. Sci., 367 (1595): 1441-
1452.
[105] Machikowa, T., Saetang, C. and Funpeng, K.,
2011. General and specific combining ability for quantitative
characters in sunflower. Journal of Agricultural Science, 3
(1), p. 91.
[106] Sthapit, B., Rana, R., Eyzaguirre, P. and Jarvis,
D., 2008. The value of plant genetic diversity to resource_xfffe_poor farmers in Nepal and Vietnam. International journal of
agricultural sustainability, 6 (2), pp. 148-166.
[107] Song, Y., Sun, H., Li, M. and Zhang, Q., 2015.
Technology application of smart spray in agriculture: A
review. Intelligent Automation & Soft Computing, 21 (3),
pp. 319-333.
[108] Tamilarasi, P. M., Arumugachamy, S., Anantha,
M. S. and Utharasu, S., 2010. Identification of nitrogen (N)
stress tolerant maize (Zea mays L.) inbred lines for low
nitrogen input condition. Indian Journal of Agricultural
Research, 44 (11), pp. 53-57.
[109] Dublin, D. R. and Tanaka, N., 2014. Indigenous
agricultural development for sustainability and “Satoyama”.
Geography, Environment, Sustainability, 7 (2), pp. 86-95.
[110] Tilman DG, Cassman KG, Matson PA, Naylor
R, Polasky S(2002) Agricultural sustainability and intensive
production practices. Nature 418: 671–677.
[111] Tokatlidis IS, Koutroubas SD (2004) A review of
maize hybrids’ dependence on high plant populations and
its implications for crop yield stability. Field Crops Res 88:
103–114.
[112] Trachsel, S., S. Kaeppler, K. Brown, and J.
Lynch, 2011: Shovelomics: high throughput phenotyping of
maize (Zea mays L.) root architecture in the field. Plant Soil
341, 75—87.
[113] Tsai, W. T., Chang, C. Y. and Lee, S. L., 1998. A
low cost adsorbent from agricultural waste corn cob by zinc
chloride activation. Bioresource Technology, 64 (3), pp. 211-
217.
[114] Collins, N. C., Tardieu, F. and Tuberosa, R., 2008.
Quantitative trait loci and crop performance under abiotic
stress: where do we stand? Plant physiology, 147 (2), pp.
469-486.
[115] Tuberosa, R., 2012. Phenotyping for drought
tolerance of crops in the genomics era. Frontiers in
physiology, 3, p. 347.
[116] Wang, Q., Wang, Y., Wang, Q. and Liu, J., 2014.
Impacts of 9 years of a new conservational agricultural
management on soil organic carbon fractions. Soil and
Tillage Research, 143, pp. 1-6.
[117] Wasson, A.; Richards, R.; Chatrath, R.; Misra,
S.; Prasad, S. S.; Rebetzke, G.; Kirkegaard, J.; Christopher,
J.; Watt, M. Traits and selection strategies to improve root
systems and water uptake in water-limited wheat crops. J.
Exp. Bot. 2012, 63, 3485–3498.
[118] Wasson, A. P., G. J. Rebetzke, J. A. Kirkegaard, J.
Christopher, R. A. Richards, and M. Watt, 2014: Soil coring
at multiple field environments can directly quantify variation
in deep root traits to select wheat genotypes for breeding. J.
Exp. Bot. 65, 6231—6249.
[119] Watt, M.; Schneebeli, K.; Dong, P.; Wilson, I.
W. The shoot and root growth of Brachypodium and its
potential as a model for wheat and other cereal crops. Funct.
Plant Biol. 2009, 36, 960–969.
[120] Wolansky, M. A. 2005. Genetic manipulation of
aspartate amino transferase levels in Brassica napus: Effects
on nitrogen use efficiency. M. Sc. Thesis, University of
Albert.
[121] Wu, H., Zhang, Y., Yuan, Z. and Gao, L., 2016. A
review of phosphorus management through the food system:
identifying the roadmap to ecological agriculture. Journal of
cleaner production, 114, pp. 45-54.
[122] Xu, Y., R. Wang, Y. Tong, H. Zhao, Q. Xie, D.
Liu, A. Zhang, B. Li, H. Xu, and D. An. 2014. Mapping
QTLs for yield and nitrogen-related traits in wheat: Influence
of nitrogen and phosphorus fertilization on QTL expression.
Theor. Appl. Genet. 127: 59–72.
[123] Yamaya T. M. Obara, H. Nakajima, S. Sasaki,
T. Hayakawa, and T. Sato. 2002. Genetic manipulation and
quantitative-trait loci mapping for nitrogen recycling in rice.
J. Expt. Bot. 53: 917–25.
[124] Yapi, A. M.; Kergna, A. O.; Debrah, S. K.;
Sidibe, A.; Sanogo, O. Analysis of the Economic Impact
of Sorghum and Millet Research in Mali; International
Crops Research Institute for the Semi-Arid Tropics: Andhra
Pradesh, India, 2000.
[125] Srivastava, R. B., Paroda, R. S., Sharma, S. C.
and Yunus, M. D., 1989. Genetic variability and advance
under four selection procedures in wheat pedigree breeding
programme. Theoretical and applied genetics, 77 (4), pp.
516-520.
[126] Zhan, A.; Lynch, J. P. Reduced frequency of
lateral root branching improves N capture from Low-N soils
in maize. J. Exp. Bot. 2015, doi: 10.1093/jxb/erv007.
[127]Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S.
L., Zhang, L. J., Liu, X. J., Cui, Z. L., Yin, B., Christie, P.,
Zhu, Z. L. and Zhang, F. S., 2009. Reducing environmental
risk by improving N management in intensive Chinese
agricultural systems. Proceedings of the National Academy
of Sciences, 106 (9), pp. 3041-3046.
[128] Zhao, Y., Y. He, J. Sun, J. Zhang and Y. Zhan.
2018. Effects of nitrogen deficiency on physiology and
growth of Fraxinus mand shurica. Pak. J. Bot., 50 (1): 179-
187.
[129] Restuccia, D., Yang, D. T. and Zhu, X., 2008.
Agriculture and aggregate productivity: A quantitative crosscountry analysis. Journal of monetary economics, 55 (2), pp.
234-250.
[130] DoVale, J. C. and Fritsche-Neto, R., 2015. Root
phenomics. In Phenomics (pp. 49-66). Springer, Cham.
[131] Cartea, M. E., Francisco, M., Lema, M., Soengas,
P. and Velasco, P., 2010. Resistance of cabbage (Brassica
oleracea capitata group) crops to Mamestra brassicae.
Journal of economic entomology, 103 (5), pp. 1866-1874.
DOI: http://dx.doi.org/10.12361/2661-3689-05-03-126425
Refbacks
- 当前没有refback。