首页出版说明中文期刊中文图书环宇英文官网付款页面

主要粮食作物耐氮低应力育种研究进展

莱米 ·亚
埃塞俄比亚农业研究所

摘要


植物的生长发育依赖于氮。谷类作物的发育受土壤氮含量的影响很大,而热带土壤的氮含量较低。有机废
物会将氮截留在土壤中,使植物无法获得氮。另一方面,低投入农业是指以较少的投入维持的系统,导致系统紧张,
通常是由氮和磷酸盐短缺或缺水造成的,这会导致产量损失。在发达国家,它经常与有机农业有关,并被用作有机
农业的同义词。一种具有耐受性的植物在疾病发生后再也无法抵御或控制疾病的传播。因此,迫切需要找到增加粮
食生产的方法,特别是在世界上最贫穷的地区。在当代的改良尝试中,基于更高产量表现的基因型选择通常是在每
种类型的胁迫的最佳条件下进行的。为了解决这些情况,必须创建着眼于潜在低产品种的育种课程。在这些课程中,
选择了具有更好抗逆性的品种,如延迟叶片衰老、改善营养经济性、当地环境适应性、持续产量和抗病性,从而提
高了低投入系统的可持续性。因此,来自世界各地的研究人员正在投入大量精力来创造改良品种和杂交种。可以通
过引进、选择、杂交和突变技术创造出非生物和耐生物的作物品种。使用系谱、改良的大宗系谱和另一种培养方法
来生产能够耐受盐度的品种。为了通过传统育种或生物技术方法创造出优良的基因型,遗传学家必须了解作物中生
物和生物耐受性的遗传基础。由于作物科学和遗传技术的快速进步,育种家必须不断更新他们的知识和能力,以保
持最新。

关键词


氮气;有机的;经济;表演

全文:

PDF


参考


[1] Abay, F.; Bjorn tad, A. Specific adaptation of barley

varieties in different locations in Ethiopia. Euphytica 2009,

167, 181-195.

[2] Alam, A. K. M. M., Ahmed, S., Begum, M. And

Sultan, M. K. (2008). Heterosis and Combining.

[3] Ali, A. J., Xu, J. L., Ismail, A. M., Fu, B.

Y., Vijayakumar, C. H. M., Gao, Y. M., Domingo, J.,

Maghirang, R., Yu, S. B., Gregorio, G., Yanaghihara, S.,

Cohen, M., Carmen, B., Mackill, D. and Li, Z. K., 2006.

Hidden diversity for abiotic and biotic stress tolerances in

the primary gene pool of rice revealed by a large backcross

breeding program. Field Crops Res., 97: 66–76.

[4] Andersen, J. R. and Lübberstedt, T., 2003.

Functional markers in plants. Trends in plant science, 8 (11),

pp. 554-560.

[5] Andrews, R. W., Pollard, A. and Pearce, J. M., 2013.

The effects of snowfall on solar photovoltaic performance.

Solar Energy, 92, pp. 84-97.

[6] Ashraf, M. and McNeilly, T., 1988. Variability in

salt tolerance of nine spring wheat cultivars. Journal of

Agronomy and Crop Science, 160 (1), pp. 14-21.

[7] Atkinson, J. A., L. U. Wingen, M. Griffiths, M. P.

Pound, O.Gaju, M. J. Foulkes, J. Le Gouis, S. Griffiths, M.

J. Bennett, J. King, and D. M. Wells, 2015: Phenotyping

pipeline reveals major seedling root growth QTL in

hexaploid wheat. J. Exp. Bot. 66, 2283—2292.

[8] Badu-Apraku, B., Fakorede, M. A. B., Oyekunle, M.

And Akinwale, R. O. (2011b). Selection and exploitation of

heterosis in crops. An International Symposium, Mexico. Pp

11.

[9] Badu-Apraku, B., Oyekunle, M., Fakorede, M. A.

B., Vroh, I., O Akinwale, R. and Aderounmu, M., 2013.

Combining ability, heterotic patterns and genetic diversity of

extra-early yellow inbreds under contrasting environments.

Euphytica, 192 (3), pp. 413-433.

[10] Baenziger, M. And Lafitte, H. R. (1997). Efficiency

of secondary traits for improving maize for low-nitrogen

target environments. Crop Science 37: 1110–1117.

[11] Baker, H. G., Opler, P. A. and Baker, I., 1978. A

comparison of the amino acid complements of floral and

extra floral nectars. Botanical Gazette, 139 (3), pp. 322-332.

[12] Banziger, M. and Diallo, A. O., 2004. Progress

in developing drought and N stress tolerant maize cultivars

for eastern and southern Africa. In Integrated approaches

to higher maize productivity in the new millennium.

Proceedings of the 7th eastern and southern Africa regional

maize conference, CIMMYT/KARI, Nairobi, Kenya (pp.

189-194).

[13] Bänziger, M., Betrán, F. J. and Lafitte, H. R.,

1997. Efficiency of high-nitrogen selection environments for

improving maize for low-nitrogen target environments. Crop

Science, 37 (4), pp. 1103-1109.

[14] Edmeades, G. O., Bolaños, J., Chapman, S. C.,

Lafitte, H. R. and Bänziger, M., 1999. Selection improves

drought tolerance in tropical maize populations: I. Gains in

biomass, grain yield, and harvest index. Crop science, 39 (5),

pp. 1306-1315.

[15] Bänziger, M. and Long, J., 2000. The potential for

increasing the iron and zinc density of maize through plant_xfffe_breeding. Food and Nutrition Bulletin, 21 (4), pp. 397-400.

[16] Barraclough, P. B., Lopez-Bellido, R. and

Hawkesford, M. J., 2014. Genotypic variation in the uptake,

partitioning and remobilization of nitrogen during grain_xfffe_filling in wheat. Field Crops Research, 156, pp. 242-248.

[17] Beatty, I. D. and Gerace, W. J., 2009.

Technologyenhanced formative assessment: A research_xfffe_based pedagogy for teaching science with classroom

response technology. Journal of Science Education and

Technology, 18 (2), pp. 146-162.

[18] Hemmerle, H., Burger, H. J., Below, P., Schubert,

G., Rippel, R., Schindler, P. W., Paulus, E. and Herling, A.

W., 1997. Chlorogenic acid and synthetic chlorogenic acid

derivatives: novel inhibitors of hepatic glucose-6-phosphate

translocase. Journal of medicinal chemistry, 40 (2), pp. 137-

145.

[19] Betrán, F. J., Ribaut, J. M., Beck, D. and De León,

D. G., 2003. Genetic diversity, specific combining ability,

and heterosis in tropical maize under stress and nonstress

environments. Crop Science, 43 (3), pp. 797-806.

[20] Beyene, Y., Katoh, S., WoldeGabriel, G., Hart, W.

K., Uto, K., Sudo, M., Kondo, M., Hyodo, M., Renne, P.

R., Suwa, G. and Asfaw, B., 2013. The characteristics and

chronology of the earliest Acheulean at Konso, Ethiopia.

Proceedings of the National Academy of Sciences, 110 (5),

pp. 1584-1591.

[21] Bharath, S. T., Jayaraman, S. and Nagar, V., 2013.

Exit as governance: An empirical analysis. The Journal of

Finance, 68 (6), pp. 2515-2547.

[22] Blum, L. and Stell, G., 1979. Polydisperse systems.

I. Scattering function for polydisperse fluids of hard or

permeable spheres. The Journal of Chemical Physics, 71 (1),

pp. 42-46.

[23] Cañas, A. I. and Camarero, S., 2010. Laccases

and their natural mediators: biotechnological tools for

sustainable ecofriendly processes. Biotechnology advances,

28 (6), pp. 694-705.

[24] Berry, P., Foulkes, J., Carvalho, P., Teakle, G.,

White, P., White, C. and Roques, S., 2011. Breeding oilseed

rape with a low requirement for nitrogen fertiliser. HGCA

Project Report, (479).

[25] Chang, M. M., Leeman, S. E. and NIALL, H. D.,

1971. Amino-acid sequence of substance P. Nature New

Biology, 232 (29), pp. 86-87.

[26] Craswell, E. T. and Godwin, D. C., 1984. The

efficiency of nitrogen fertilizers applied to cereals in

different climates. Advances in plant nutrition (USA).

[27] Cui, J., Chi, X. Z., Ding, H. T., Lin, L. T.,

Yang, Z. C. and Yan, G. Z., 2009. Transient response and

stability of the AGCPI closed-loop controlled MEMS

vibratory gyroscopes. Journal of Micromechanics and

Microengineering, 19 (12), p. 125015.

[28] Dawson, J. C., Huggins, D. R. and Jones, S. S.,

2008. Characterizing nitrogen use efficiency in natural and

agricultural ecosystems to improve the performance of

cereal crops in low-input and organic agricultural systems.

Field Crops Research, 107 (2), pp. 89-101.

[29] De Fraiture, C., Molden, D. and Wichelns,

D., 2010. Investing in water for food, ecosystems, and

livelihoods: An overview of the comprehensive assessment

of water management in agriculture. Agricultural Water

Management, 97 (4), pp. 495-501.

[30] Derera, J., Tongoona, P., Vivek, B. S. and Laing, M.

D., 2008. Gene action controlling grain yield and secondary

traits in southern African maize hybrids under drought and

nondrought environments. Euphytica, 162 (3), pp. 411-422.

[31] Dewey, O. R., Hartley, G. S. and MacLauchlan, J.

W. G., 1962. External leaf waxes and their modification by

roottreatment of plants with trichloroacetate. Proceedings of

the Royal Society of London. Series B. Biological Sciences,

155(961), pp. 532-550.

[32] Meena, H. P., Bainsla, N. K. and Yadav, D. K.,

2016. Breeding for abiotic stress tolerance in crop plants.

Recent advances in plant stress physiology. Daya Publishing

House, New Delhi, pp. 329-378.

[33] Raju, P. S., Clark, R. B., Ellis, J. R., Duncan, R. R.

and Maranville, J. W., 1990. Benefit and cost analysis and

phosphorus efficiency of VA mycorrhizal fungi colonizations

with sorghum (Sorghum bicolor) genotypes grown at varied

phosphorus levels. In Plant Nutrition—Physiology and

Applications (pp. 165-170). Springer, Dordrecht.

[34] Duvick, D. N., 1997. What is yield. Developing

drought and low N-tolerant maize. CIMMYT, El Batan,

Mexico, pp. 332-335.

[35] Wheeler, D. M., Edmeades, D. C., Christie, R. A.

and Gardner, R., 1992. Effect of aluminium on the growth of

34 plant species: a summary of results obtained in low ionic

strength solution culture. Plant and Soil, 146 (1), pp. 61-66.

[36] Fageria, N. K., Baligar, V. C. and Zobel, R. W.,

2007. Yield, nutrient uptake, and soil chemical properties as

influenced by liming and boron application in common bean

in a no‐tillage system. Communications in soil science and

plant analysis, 38 (11-12), pp. 1637-1653.

[37] Hill, W. G. and Mackay, T. F., 2004. DS Falconer

and Introduction to quantitative genetics. Genetics, 167 (4),

pp. 1529-1536.

[38] Cheverud, J. M., 1984. Quantitative genetics and

developmental constraints on evolution by selection. Journal

of theoretical biology, 110 (2), pp. 155-171.

[39] Fess, T. L., Kotcon, J. B. and Benedito, V. A.,

2011. Crop breeding for low input agriculture: a sustainable

response to feed a growing world population. Sustainability,

3 (10), pp. 1742-1772.

[40] Fisher, S. S., McGreevy, M., Humphries, J. and

Robinett, W., 1987, January. Virtual environment display

system. In Proceedings of the 1986 workshop on Interactive

3D graphics(pp. 77-87).

[41] Foulkes, M. J., Hawkesford, M. J., Barraclough, P.

B., Holdsworth, M. J., Kerr, S., Kightley, S. and Shewry, P.

R., 2009. Identifying traits to improve the nitrogen economy

of wheat: Recent advances and future prospects. Field Crops

Research, 114 (3), pp. 329-342.

[42] Gaju, O., Allard, V., Martre, P., Le Gouis, J.,

Moreau, D., Bogard, M., Hubbart, S. and Foulkes, M. J.,

2014. Nitrogen partitioning and remobilization in relation to

leaf senescence, grain yield and grain nitrogen concentration

in wheat cultivars. Field Crops Research, 155, pp. 213-223.

[43] Gallais, A. and Hirel, B., 2004. An approach to

the genetics of nitrogen use efficiency in maize. Journal of

experimental botany, 55 (396), pp. 295-306.

[44] Gethi, J. G. and Smith, M. E., 2004. Genetic

responses of single crosses of maize to Striga hermonthica

(Del.) Benth. and Striga asiatica (L.) Kuntze. Crop science,

44 (6), pp. 2068-2077.

[45] Godfray, H. C. J., Beddington, J. R., Crute, I. R.,

Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson,

S., Thomas, S. M. and Toulmin, C., 2010. Food security: the

challenge of feeding 9 billion people. science, 327 (5967),

pp. 812-818.

[46] Pradheep, K., Gomez, S. M. and Kalamani,

A., 2003. Possibilities of Broadening the Plant Wealth of

Horticulture from Existing. Asian Journal of Plant Science,

2 (9), pp. 719-730.

[47] Good, A. G., Shrawat, A. K. and Muench, D.

G., 2004. Can less yield more? Is reducing nutrient input

into the environment compatible with maintaining crop

production? Trends in plant science, 9 (12), pp. 597-605.

[48] Goodnight, T. M., 1997. Perceptions and attitudes

of selected swine producers and non-swine producers

concerning certain social and environmental issues (Doctoral

dissertation, Oklahoma State University).

[49] Gregorio, G. B. and Senadhira, D., 1993. Genetic

analysis of salinity tolerance in rice (Oryza sativa L.).

Theoretical and applied Genetics, 86 (2), pp. 333-338.

[50] Griffing, B. R. U. C. E., 1956. Concept of general

and specific combining ability in relation to diallel crossing

systems. Australian journal of biological sciences, 9 (4), pp.

463-493.

[51] Guei, R. G. and Wassom, C. E., 1992. Inheritance

of some drought adaptive traits in maize. I: Interrelationships

between yield, flowering, and ears per plant. Maydica, 37 (2),

pp. 157-164.

[52] Waddell, J. T., Gupta, S. C., Moncrief, J. F.,

Rosen, C. J. and Steele, D. D., 1999. Irrigation and nitrogen

management effects on potato yield, tuber quality, and

nitrogen uptake. Agronomy Journal, 91 (6), pp. 991-997.

[53] Purba, J., Sharma, R. K., Jat, M. L., Thind, H.

S., Gupta, R. K., Chaudhary, O. P., Chandna, P., Khurana,

H. S., Kumar, A., Uppal, H. S. and Uppal, R. K., 2015.

Site-specific fertilizer nitrogen management in irrigated

transplanted rice (Oryza sativa) using an optical sensor.

Precision Agriculture, 16 (4), pp. 455-475.

[54] Hallauer, A. R., Russell, W. A. and Lamkey, K. R.,

1988. Corn breeding. Corn and corn improvement, 18, pp.

463-564.

[55] Kopke, U., Athmann, M., Han, E. and Kautz,

T., 2015. Optimising cropping techniques for nutrient

and environmental management in organic agriculture.

Sustainable Agriculture Research, 4 (526-2016-37934).

[56] Bruun, S., Luxhøi, J., Magid, J., de Neergaard,

A. and Jensen, L. S., 2006. A nitrogen mineralization

model based on relationships for gross mineralization and

immobilization. Soil Biology and Biochemistry, 38 (9), pp.

2712-2721.

[57] Hochholdinger, F., and R. Tuberosa, 2009: Genetic

and genomic dissection of maize root development and

architecture. Curr. Opin. Plant Biol. 12, 172—177.

[58] Cai, C., Hu, S., Guo, J., Shi, Y., Xie, G. J. and

Yuan, Z., 2015. Nitrate reduction by denitrifying anaerobic

methane oxidizing microorganisms can reach a practically

useful rate. Water Research, 87, pp. 211-217.

[59] Huggins, D. R. and Pan, W. L., 2003. Key

indicators for assessing nitrogen use efficiency in cereal_xfffe_based agroecosystems. Journal of crop production, 8 (1-2),

pp. 157-185.

[60] Ju XT, Xing GX, Chen XP, Zhang SL, Zhang

LJ, Liu XJ, Cui ZL, Christie P, Zhang FS (2009) Reducing

environmental risk by improving N management in intensive

Chinese agricultural systems. Proc Natl Acad Sci USA 106:

3041–3046.

[61] Ju, C., Buresh, R. J., Wang, Z., Zhang, H., Liu, L.,

Yang, J., et al. (2015). Root and shoot traits for rice varieties

with higher grain yield and higher nitrogen use efficiency

at lower nitrogen rates application. Field Crops Res. 175,

47–55. doi: 10.1016/j.fcr.2015.02.007.

[62] Kamoshita, A., Rodriguez, R., Yamauchi, A. and

Wade, L., 2004. Genotypic variation in response of rainfed

lowland rice to prolonged drought and rewatering. Plant

Production Science, 7 (4), pp. 406-420.

[63] Kanbar, A., Toorchi, M. and Shashidhar, H.,

2009. Relationship between root and yield morphological

characters in rainfed low land rice (Oryza sativa L.). Cereal

Research Communications, 37 (2), pp. 261-268.

[64] Kempthorne, O., 1957. An introduction to genetic

statistics.

[65] Kochian, L. V., 2012. Rooting for more

phosphorus. Nature, 488 (7412), pp. 466-467.

[66] Thind, H. S., Kumar, A., Gupta, R. K., Kaul, A.

and Vashistha, M., 2012. Fixed-time adjustable dose site_xfffe_specific fertilizer nitrogen management in transplanted

irrigated rice (Oryza sativa L.) in South Asia. Field Crops

Research, 126, pp. 63-69.

[67] Lafitte, H. R. and Edmeades, G. O., 1994.

Improvement for tolerance to low soil nitrogen in tropical

maize I. Selection criteria. Field Crops Research, 39 (1), pp.

1-14.

[68] Lam, H. M., Wong, P., Chan, H. K., Yam, K.

M., Chen, L., Chow, C. M. and Coruzzi, G. M., 2003.

Overexpression of the ASN1 gene enhances nitrogen status

in seeds of Arabidopsis. Plant physiology, 132 (2), pp. 926-

935.

[69] Hardgrove, S. J. and Livesley, S. J., 2016.

Applying spent coffee grounds directly to urban agriculture

soils greatly reduces plant growth. Urban forestry & urban

greening, 18, pp. 1-8.

[70] Lian, X., Xing, Y., Yan, H., Xu, C., Li, X. and

Zhang, Q., 2005. QTLs for low nitrogen tolerance at

seedling stage identified using a recombinant inbred line

population derived from an elite rice hybrid. Theoretical and

Applied Genetics, 112 (1), pp. 85-96.

[71] Gilbody, S., Lewis, S. and Lightfoot, T., 2007.

Methylenetetrahydrofolate reductase (MTHFR) genetic

polymorphisms and psychiatric disorders: a HuGE review.

American journal of epidemiology, 165 (1), pp. 1-13.

[72] Liu, M., Liu, R. and Chen, W., 2013. Graphene

wrapped Cu2O nanocubes: non-enzymatic electrochemical

sensors for the detection of glucose and hydrogen peroxide

with enhanced stability. Biosensors and Bioelectronics, 45,

pp. 206-212.

[73] Maiti, R. K., Amaya, L. E. D., Cardona, S. I.,

Dimas, A. M. O., de la rosaibarra, M. And Castillo, H. D.,

1996. Genotypic variability in maize cultivars (Zea mays L.)

For resistance to drought and salinity at the seedling stage.

Journal of Plant Physiology, 148: 741-744.

[74] Maiti, R. K., dela Rosa-Ibarra, M. And Sandoval, N.

D., 1994. Genotypic variability in glossy sorghum lines for

resistance to drought, salinity and temperature stress at the

seedling stage. Journal of Plant Physiology, 143: 211-244.

[75] Makumbi, D., Betrán, J. F., Bänziger, M. and

Ribaut, J. M., 2011. Combining ability, heterosis and genetic

diversity in tropical maize (Zea mays L.) under stress and

non-stress conditions. Euphytica, 180 (2), pp. 143-162.

[76] Mallik, S., 1995. Rice germplasm evaluation

and improvement for stagnant flooding. KT, editor.

Rainfed lowland rice: agricultural research for high-risk

environments, Manila (Philip pines): International Rice

Research Institute. p 97-109.

[77] Mallik, S., Mandal, B. K., Sen, S. N. and

Sarkarung, S., 2002. Shuttle Breeding: an effective tool for

rice varietal improvement in rainfed lowland ecosystem in

eastern India. Curr. Sci., 83 (9): 1097-1102.

[78] Manavalan, L. K., T. Musket, and H. T. Nguyen,

2011: Natural genetic variation for root traits among

diversity lines of maize (Zea mays L.). Maydica 56, 1-10.

[79] Manske, G. G. B., I. J. Ortoz-Monasterio, and P. L.

G. Vlek. 2001. Techniques for measuring genetic diversity in

roots. p. 208–218. In: M. P. Reynolds, J. I. Ortiz-Monastoio,

and A. MacNab (eds), Application of physiology in wheat

breeding. CIMMYT, Mexico, DF.

[80] Masclaux-Daubresse, C., Reisdorf-Cren, M.,

Pageau, K., Lelandais, M., Grandjean, O., Kronenberger,

J., Valadier, M. H., Feraud, M., Jouglet, T. and Suzuki, A.,

2006. Glutamine synthetase-glutamate synthase pathway

and glutamate dehydrogenase play distinct roles in the sink_xfffe_source nitrogen cycle in tobacco. Plant physiology, 140 (2),

pp. 444-456.

[81] Masclaux-Daubresse, C., Daniel-Vedele, F.,

Dechorgnat, J., Chardon, F., Gaufichon, L. and Suzuki, A.,

2010. Nitrogen uptake, assimilation and remobilization in

plants: challenges for sustainable and productive agriculture.

Annals of botany, 105 (7), pp. 1141-1157.

[82] Meseka, S. K., Menkir, A. And Ibrahim, A. E. S.

(2006). Genetic analysis of performance of Nitrogen use in

maize. Pp. 316-319.

[83] Muellner, A. E., Mascher, F., Schneider, D., Ittu,

G., Toncea, I., Rolland, B. and Löschenberger, F., 2014.

Refining breeding methods for organic and low-input

agriculture: analysis of an international winter wheat ring

test. Euphytica, 199 (1), pp. 81-95.

[84] Murphy, K., Lammer, D., Lyon, S., Carter, B.

and Jones, S. S., 2005. Breeding for organic and low-input

farming systems: An evolutionary–participatory breeding

method for inbred cereal grains. Renewable Agriculture and

Food Systems, 20 (1), pp. 48-55.

[85] Murphy, K. M., Campbell, K. G., Lyon, S. R. and

Jones, S. S., 2007. Evidence of varietal adaptation to organic

farming systems. Field Crops Research, 102 (3), pp. 172-

177.

[86] Obara, M., W. Tamura, T. Ebitani, M. Yano, T. Sato

and T. Yamaya. 2010. Fine mapping of qrl6. 1, a major QTL

for root length of rice seedlings grown under a wide range of

NH4+concentrations in hydroponic conditions. Theor. Appl.

Genet., 21: 535-547.

[87] Obara, M., T. Takeda, T. Hayakawa and T. Yamaya.

2011. Mapping quantitative trait loci controlling root length

in rice seedlings grown with low or sufficient supply using

backcross recombinant lines derived from a cross between

Oryza sativa L. And Oryza glaberrima Steud. Soil Sci. And

Plant Nutr., 57: 80-92.

[88] Ogawa, S., M. O. Valencia, M. Ishitani and M.

G. Selvaraj. 2014. Root system architecture variation

in response to different NH4+ concentrations and its

association with nitrogen deficient tolerance traits in rice.

Acta Phys. Plantarum., 36: 2361-2372.

[89] Paez-Garcia, A., Motes, C. M., Scheible, W. R.,

Chen, R., Blancaflor, E. B. and Monteros, M. J., 2015. Root

traits and phenotyping strategies for plant improvement.

Plants, 4 (2), pp. 334-355.

[90] Paroda, R. S. and Arora, R. K., 1986. and their

Conservation: Indian Perspective. Conservation for

Productive Agriculture: Commemorative Volume Released

on the Eightieth Birthday of Dr. BP Pal, p. 73.

[91] Quarrie, s. a., 1996. New molecular tools to

improve the efficiency of breeding for increased drought

resistance. Plant growth regulators, 20: 167-178.

[92] Ramage, R. T., 1980. Genetic methods to

breed salt tolerance in plants. In Genetic engineering of

osmoregulation (pp. 311-318). Springer, Boston, MA.

[93] Raun, W. R. and Johnson, G. V., 1999. Improving

nitrogen use efficiency for cereal production. Agronomy

journal, 91 (3), pp. 357-363.

[94] Rebouillat, P., Vidal, R., Cravedi, J. P., Taupier_xfffe_Letage, B., Debrauwer, L., Gamet-Payrastre, L., Touvier,

M., Hercberg, S., Lairon, D., Baudry, J. and Kesse-Guyot,

E., 2021. Estimated dietary pesticide exposure from plant_xfffe_based foods using NMF-derived profiles in a large sample

of French adults. European Journal of Nutrition, 60 (3), pp.

1475-1488.

[95] Rengel, Z. And P. Marschner. 2005. Nutrient

availability and management in the rhizosphere: exploiting

genotypicdifferences. New Phytol., 168: 305-312.

[96] Saito, R., Cranmer, B. K., Tessari, J. D., Larsson,

L., Mehaffy, J. M., Keefe, T. J. and Reynolds, S. J., 2009.

Recombinant factor C (rFC) assay and gas chromatography/

mass spectrometry (GC/MS) analysis of endotoxin

variability in four agricultural dusts. Annals of occupational

hygiene, 53 (7), pp. 713-722.

[97] Scharf, P. C., Schmidt, J. P., Kitchen, N. R.,

Sudduth, K. A., Hong, S. Y., Lory, J. A. and Davis, J. G.,

2002. Remote sensing for nitrogen management. Journal of

soil and water conservation, 57 (6), pp. 518-524.

[98] Nobuhiro, T., Shimizu, A., Kabeya, N.,

Tsuboyama, Y., Kubota, T., Abe, T., Araki, M., Tamai, K.,

Chann, S. and Keth, N., 2007. Year-round observation

of evapotranspiration in an evergreen broadleaf forest in

Cambodia. In Forest environments in the Mekong river

basin (pp. 75-86). Springer, Tokyo.

[99] Shrawat, A. K., R. T. Carroll, M. DePauw, G.

Taylor, and A. G. Good. 2008. Genetic engineering of

improved nitrogen use efficiency in rice by the tissue specific

expression of alanine amino transferase. Plant Biotechnol. J.

6: 722–732.

[100] Shull, G. H. “Beginning of the heterosis concept

in heterosis. lowa State.” (1952): 419-428.

[101] Singh, K. K., Talat, M. and Hasan, S. H., 2006.

Removal of lead from aqueous solutions by agricultural

waste maize bran. Bioresource Technology, 97 (16), pp.

2124-2130.

[102] Singh, RK., Gregrio, G. B. and Ismail, A. M.,

2008. Breeding rice varieties with tolerance to salt stress. J.

Indian Soc. Coastal Agric. Res., 26 (1): 16-21.

[103] Singh, B. D. (2003). Plant Breeding, Principles

and Methods. Kalyani Publishers. New Delhi.

[104] Smith, S. And I. D. Smet. 2012. Root system

architecture: insights from Arabidopsis and cereal crops.

Philos. Trans. R. Soc. Lond. B. Biol. Sci., 367 (1595): 1441-

1452.

[105] Machikowa, T., Saetang, C. and Funpeng, K.,

2011. General and specific combining ability for quantitative

characters in sunflower. Journal of Agricultural Science, 3

(1), p. 91.

[106] Sthapit, B., Rana, R., Eyzaguirre, P. and Jarvis,

D., 2008. The value of plant genetic diversity to resource_xfffe_poor farmers in Nepal and Vietnam. International journal of

agricultural sustainability, 6 (2), pp. 148-166.

[107] Song, Y., Sun, H., Li, M. and Zhang, Q., 2015.

Technology application of smart spray in agriculture: A

review. Intelligent Automation & Soft Computing, 21 (3),

pp. 319-333.

[108] Tamilarasi, P. M., Arumugachamy, S., Anantha,

M. S. and Utharasu, S., 2010. Identification of nitrogen (N)

stress tolerant maize (Zea mays L.) inbred lines for low

nitrogen input condition. Indian Journal of Agricultural

Research, 44 (11), pp. 53-57.

[109] Dublin, D. R. and Tanaka, N., 2014. Indigenous

agricultural development for sustainability and “Satoyama”.

Geography, Environment, Sustainability, 7 (2), pp. 86-95.

[110] Tilman DG, Cassman KG, Matson PA, Naylor

R, Polasky S(2002) Agricultural sustainability and intensive

production practices. Nature 418: 671–677.

[111] Tokatlidis IS, Koutroubas SD (2004) A review of

maize hybrids’ dependence on high plant populations and

its implications for crop yield stability. Field Crops Res 88:

103–114.

[112] Trachsel, S., S. Kaeppler, K. Brown, and J.

Lynch, 2011: Shovelomics: high throughput phenotyping of

maize (Zea mays L.) root architecture in the field. Plant Soil

341, 75—87.

[113] Tsai, W. T., Chang, C. Y. and Lee, S. L., 1998. A

low cost adsorbent from agricultural waste corn cob by zinc

chloride activation. Bioresource Technology, 64 (3), pp. 211-

217.

[114] Collins, N. C., Tardieu, F. and Tuberosa, R., 2008.

Quantitative trait loci and crop performance under abiotic

stress: where do we stand? Plant physiology, 147 (2), pp.

469-486.

[115] Tuberosa, R., 2012. Phenotyping for drought

tolerance of crops in the genomics era. Frontiers in

physiology, 3, p. 347.

[116] Wang, Q., Wang, Y., Wang, Q. and Liu, J., 2014.

Impacts of 9 years of a new conservational agricultural

management on soil organic carbon fractions. Soil and

Tillage Research, 143, pp. 1-6.

[117] Wasson, A.; Richards, R.; Chatrath, R.; Misra,

S.; Prasad, S. S.; Rebetzke, G.; Kirkegaard, J.; Christopher,

J.; Watt, M. Traits and selection strategies to improve root

systems and water uptake in water-limited wheat crops. J.

Exp. Bot. 2012, 63, 3485–3498.

[118] Wasson, A. P., G. J. Rebetzke, J. A. Kirkegaard, J.

Christopher, R. A. Richards, and M. Watt, 2014: Soil coring

at multiple field environments can directly quantify variation

in deep root traits to select wheat genotypes for breeding. J.

Exp. Bot. 65, 6231—6249.

[119] Watt, M.; Schneebeli, K.; Dong, P.; Wilson, I.

W. The shoot and root growth of Brachypodium and its

potential as a model for wheat and other cereal crops. Funct.

Plant Biol. 2009, 36, 960–969.

[120] Wolansky, M. A. 2005. Genetic manipulation of

aspartate amino transferase levels in Brassica napus: Effects

on nitrogen use efficiency. M. Sc. Thesis, University of

Albert.

[121] Wu, H., Zhang, Y., Yuan, Z. and Gao, L., 2016. A

review of phosphorus management through the food system:

identifying the roadmap to ecological agriculture. Journal of

cleaner production, 114, pp. 45-54.

[122] Xu, Y., R. Wang, Y. Tong, H. Zhao, Q. Xie, D.

Liu, A. Zhang, B. Li, H. Xu, and D. An. 2014. Mapping

QTLs for yield and nitrogen-related traits in wheat: Influence

of nitrogen and phosphorus fertilization on QTL expression.

Theor. Appl. Genet. 127: 59–72.

[123] Yamaya T. M. Obara, H. Nakajima, S. Sasaki,

T. Hayakawa, and T. Sato. 2002. Genetic manipulation and

quantitative-trait loci mapping for nitrogen recycling in rice.

J. Expt. Bot. 53: 917–25.

[124] Yapi, A. M.; Kergna, A. O.; Debrah, S. K.;

Sidibe, A.; Sanogo, O. Analysis of the Economic Impact

of Sorghum and Millet Research in Mali; International

Crops Research Institute for the Semi-Arid Tropics: Andhra

Pradesh, India, 2000.

[125] Srivastava, R. B., Paroda, R. S., Sharma, S. C.

and Yunus, M. D., 1989. Genetic variability and advance

under four selection procedures in wheat pedigree breeding

programme. Theoretical and applied genetics, 77 (4), pp.

516-520.

[126] Zhan, A.; Lynch, J. P. Reduced frequency of

lateral root branching improves N capture from Low-N soils

in maize. J. Exp. Bot. 2015, doi: 10.1093/jxb/erv007.

[127]Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S.

L., Zhang, L. J., Liu, X. J., Cui, Z. L., Yin, B., Christie, P.,

Zhu, Z. L. and Zhang, F. S., 2009. Reducing environmental

risk by improving N management in intensive Chinese

agricultural systems. Proceedings of the National Academy

of Sciences, 106 (9), pp. 3041-3046.

[128] Zhao, Y., Y. He, J. Sun, J. Zhang and Y. Zhan.

2018. Effects of nitrogen deficiency on physiology and

growth of Fraxinus mand shurica. Pak. J. Bot., 50 (1): 179-

187.

[129] Restuccia, D., Yang, D. T. and Zhu, X., 2008.

Agriculture and aggregate productivity: A quantitative crosscountry analysis. Journal of monetary economics, 55 (2), pp.

234-250.

[130] DoVale, J. C. and Fritsche-Neto, R., 2015. Root

phenomics. In Phenomics (pp. 49-66). Springer, Cham.

[131] Cartea, M. E., Francisco, M., Lema, M., Soengas,

P. and Velasco, P., 2010. Resistance of cabbage (Brassica

oleracea capitata group) crops to Mamestra brassicae.

Journal of economic entomology, 103 (5), pp. 1866-1874.




DOI: http://dx.doi.org/10.12361/2661-3689-05-03-126425

Refbacks

  • 当前没有refback。