首页出版说明中文期刊中文图书环宇英文官网付款页面

传质对饱和多孔通道泊苏耶贝纳德流熵产生波动的影响

穆尼 尔·, 拉赫 玛·, 穆拉 德·
加贝斯大学化学和工艺工程系

摘要


本文报道了在垂直热梯度和质量梯度下,长径比 A=5 的饱和多孔通道中不可逆性的瞬态数值研究.使用达西-布林克
曼公式的控制方程已通过使用控制体积有限元法(CVFEM)进行数值求解。只考虑两个变量,施密特数和浮动率。其他参数
值是固定的,与泊苏耶-贝纳德流有关(在零质量梯度下)。结果表明,不同状态下的流动趋向于稳态,这取决于施密特数和
浮力比。

关键词


混合对流;多孔介质;熵生成;普里高津定理

全文:

PDF


参考


[1] Nakayama A, Hasebe K, and Sugiyama Y, Nonlinear, and Soft Matter Physics, 77 (2008). [2] Ostrach S and KamotaniY, Journal of Heat Transfer, 2

(1975) 220.[3] Evans G and Paolucci S, International Journal

for Numerical Methods in Fluids, 11 (1990) 1001. [4] Hasnaoui M, Bilgen E, Vasseur R, and Robillard

L, Numerical Heat Transfer Applications, 3 (1991) 297·

[5] Nield D A and Bejan A, Convection in Porous Media, 2nd ed, Springer, New York, (1999). [6] Nield DA and Bejan A, Convection in Porous Media, 3nd ed, Springer-Verleg, New York, (2006). [7] Vafai K, Handbook of Porous Media, Second edition, New YORK, (2005). [8] Patankar SV, In Computational Methods in Mechanics and Thermal Sciences, Hemisphere/Mac Graw-Hill, New York, NY, USA (1980). [9] Saabas H J, and Baliga B R, Part I: FNHT Pt B-Fund, 26(1994). [10] Abbassi H, Turki S and Ben Nasrallah S, HTPA, 39

(2001) 307. [11] Abbassi H, Turki S, And Ben Nasrallah S, IJTS, 40

(2001) 649. [12] Prakash C, Numerical Heat Transfer, 3 (1986) 253. [13] Hooky NA, Ph D thesis. Mc Gill University, Montreal, QC, Canada.[14] Shohel M R and Fraser A, International Journal of Thermal Sciences, 1 (2005) 21–32. [15] Abdulhassan A, Karamallah A, Mohammad WS, Khalil W H, Eng. & Tech. Journal, 9 (2011). [16] Tayari A, Hidouri N, Magherbi M, BenBrahim

A, Journal of Heat Transfer, 2 (2015). [17] Prigogine I, Editions Odile Jacob, Paris 1996




DOI: http://dx.doi.org/10.12361/2661-3689-05-04-128584

Refbacks

  • 当前没有refback。