污染沉积物的可持续异地修复:综述
摘要
发和采用了新的和可持续的污染沉积物异地修复技术。本文对污染沉积物的最新异地处理技术和资源利用方法进行
了评述。通过应用不同的技术,沉积物可以成功地转化为可持续的建筑材料,如陶粒、辅助胶凝材料、填充材料、
铺路砖、隔墙砖、预拌混凝土和泡沫混凝土。我们强调,要根据底泥的理化特性,巧妙地选择和设计合适的修复技
术,不能忽视成本、安全性、环境影响、技术成熟度和社会可接受性等重要方面。应采用不同评价方法(如环境影
响评价、成本效益分析、多准则决策分析和生命周期评价)相结合,综合评价不同可持续修复技术的可行性。我们
呼吁科学界以多学科的方式评估各种污染沉积物修复技术的可持续性。
关键词
全文:
PDF参考
[1]Abbasi, S., Keshavarzi, B., Moore, F., Shojaei, N.,
Sorooshian, A., Soltani, N., Delshab, H., 2019. Geochemistry
and environmental effects of potentially toxic elements,
polycyclic aromatic hydrocarbons and microplastics in coastal
sediments of the Persian Gulf. Environ. Earth Sci. 78, 492.
[2]Achour, R., Zentar, R., Abriak, N.-E., Rivard, P.,
Gregoire, P., 2019. Durability study of concrete incorporating
dredged sediments. Case Stud. Constr. Mater. 11, e00244.
[3]Agarwal, A., Liu, Y., 2015. Remediation technologies
for oil-contaminated sediments. Mar. Pollut. Bull. 101, 483–
490.
[4]Beolchini, F., Fonti, V., Rocchetti, L., Saraceni, G.,
Pietrangeli, B., Dell’Anno, A., 2013. Chemical and biological
strategies for the mobilisation of metals/semi-metals in
contaminated dredged sediments: experimental analysis and
environmental impact assessment. Chem. Ecol. 29, 415–426.
[5]Cai, C.Y., Zhao, M.H., Yu, Z., Rong, H.W., Zhang, C.S.,
2019. Utilization of nanomaterials for in-situ remediation of
heavy metal(loid) contaminated sediments: a review. Sci. Total
Environ. 662, 205–217.
[6]Chen, H.-J., Yang, M.-D., Tang, C.-W., Wang,
S.-Y., 2012. Producing synthetic lightweight aggregates from
reservoir sediments. Construct. Build. Mater. 28, 387–394.
[7]Chen, W., Qu, Y., Xu, Z., He, F., Chen, Z., Huang, S.,
Li, Y., 2017. Heavy metal (Cu, Cd, Pb, Cr) washing from river
sediment using biosurfactant rhamnolipid. Environ. Sci. Pollut.
Res. 24, 16344–16350.
[8]Du Laing, G., Meers, E., Dewispelaere, M.,
Vandecasteele, B., Rinklebe, J., Tack, F.M.G., Verloo, M.G.,
2009a. Heavy metal mobility in intertidal sediments of the
Scheldt estuary: field monitoring. Sci. Total Environ. 407,
2919–2930.
[9]Ferone, C., Liguori, B., Capasso, I., Colangelo, F.,
Cioffi, R., Cappelletto, E., Di Maggio, R., 2015. Thermally
treated clay sediments as geopolymer source material. Appl.
Clay Sci. 107, 195–204.
[10]Fraiese, A., Cesaro, A., Belgiorno, V., Sanroman,
M.A., Pazos, M., Naddeo, V., 2020. Ultrasonic processes for
the advanced remediation of contaminated sediments. Ultrason.
Sonochem. 67.
[11]Hwang, C., Bui, L., Lin, K., Lo, C., 2012. Manufacture
and performance of lightweight aggregate from municipal
solid waste incinerator fly ash and reservoir sediment for selfconsolidating lightweight concrete. Cement Concr. Compos. 34,
1159–1166.
[12]Iannelli, R., Masi, M., Ceccarini, A., Ostuni, M.B.,
Lageman, R., Muntoni, A., Spiga, D., Polettini, A., Marini, A.,
Pomi, R., 2015. Electrokinetic remediation of metal-polluted
marine sediments: experimental investigation for plant design.
Electrochim. Acta 181, 146–159.
DOI: http://dx.doi.org/10.12361/2661-3689-04-03-51
Refbacks
- 当前没有refback。