首页出版说明中文期刊中文图书环宇英文官网付款页面

污染沉积物的可持续异地修复:综述

巴特 ·拉1, 瓦莱 丽·1, 森吉 恩斯1, 温妮 ·谭1, 苏菲 ·德1, 2
1、清洁和可持续技术和工艺部门
2、

摘要


日常航道疏浚活动会产生大量疏浚的沉积物。疏浚污染沉积物的修复是一项全球性挑战。近年来,已经开
发和采用了新的和可持续的污染沉积物异地修复技术。本文对污染沉积物的最新异地处理技术和资源利用方法进行
了评述。通过应用不同的技术,沉积物可以成功地转化为可持续的建筑材料,如陶粒、辅助胶凝材料、填充材料、
铺路砖、隔墙砖、预拌混凝土和泡沫混凝土。我们强调,要根据底泥的理化特性,巧妙地选择和设计合适的修复技
术,不能忽视成本、安全性、环境影响、技术成熟度和社会可接受性等重要方面。应采用不同评价方法(如环境影
响评价、成本效益分析、多准则决策分析和生命周期评价)相结合,综合评价不同可持续修复技术的可行性。我们
呼吁科学界以多学科的方式评估各种污染沉积物修复技术的可持续性。

关键词


受污染的沉积物;有机污染物;潜在有毒元素;资源利用;稳定 /固化;可持续修复

全文:

PDF


参考


[1]Abbasi, S., Keshavarzi, B., Moore, F., Shojaei, N.,

Sorooshian, A., Soltani, N., Delshab, H., 2019. Geochemistry

and environmental effects of potentially toxic elements,

polycyclic aromatic hydrocarbons and microplastics in coastal

sediments of the Persian Gulf. Environ. Earth Sci. 78, 492.

[2]Achour, R., Zentar, R., Abriak, N.-E., Rivard, P.,

Gregoire, P., 2019. Durability study of concrete incorporating

dredged sediments. Case Stud. Constr. Mater. 11, e00244.

[3]Agarwal, A., Liu, Y., 2015. Remediation technologies

for oil-contaminated sediments. Mar. Pollut. Bull. 101, 483–

490.

[4]Beolchini, F., Fonti, V., Rocchetti, L., Saraceni, G.,

Pietrangeli, B., Dell’Anno, A., 2013. Chemical and biological

strategies for the mobilisation of metals/semi-metals in

contaminated dredged sediments: experimental analysis and

environmental impact assessment. Chem. Ecol. 29, 415–426.

[5]Cai, C.Y., Zhao, M.H., Yu, Z., Rong, H.W., Zhang, C.S.,

2019. Utilization of nanomaterials for in-situ remediation of

heavy metal(loid) contaminated sediments: a review. Sci. Total

Environ. 662, 205–217.

[6]Chen, H.-J., Yang, M.-D., Tang, C.-W., Wang,

S.-Y., 2012. Producing synthetic lightweight aggregates from

reservoir sediments. Construct. Build. Mater. 28, 387–394.

[7]Chen, W., Qu, Y., Xu, Z., He, F., Chen, Z., Huang, S.,

Li, Y., 2017. Heavy metal (Cu, Cd, Pb, Cr) washing from river

sediment using biosurfactant rhamnolipid. Environ. Sci. Pollut.

Res. 24, 16344–16350.

[8]Du Laing, G., Meers, E., Dewispelaere, M.,

Vandecasteele, B., Rinklebe, J., Tack, F.M.G., Verloo, M.G.,

2009a. Heavy metal mobility in intertidal sediments of the

Scheldt estuary: field monitoring. Sci. Total Environ. 407,

2919–2930.

[9]Ferone, C., Liguori, B., Capasso, I., Colangelo, F.,

Cioffi, R., Cappelletto, E., Di Maggio, R., 2015. Thermally

treated clay sediments as geopolymer source material. Appl.

Clay Sci. 107, 195–204.

[10]Fraiese, A., Cesaro, A., Belgiorno, V., Sanroman,

M.A., Pazos, M., Naddeo, V., 2020. Ultrasonic processes for

the advanced remediation of contaminated sediments. Ultrason.

Sonochem. 67.

[11]Hwang, C., Bui, L., Lin, K., Lo, C., 2012. Manufacture

and performance of lightweight aggregate from municipal

solid waste incinerator fly ash and reservoir sediment for selfconsolidating lightweight concrete. Cement Concr. Compos. 34,

1159–1166.

[12]Iannelli, R., Masi, M., Ceccarini, A., Ostuni, M.B.,

Lageman, R., Muntoni, A., Spiga, D., Polettini, A., Marini, A.,

Pomi, R., 2015. Electrokinetic remediation of metal-polluted

marine sediments: experimental investigation for plant design.

Electrochim. Acta 181, 146–159.




DOI: http://dx.doi.org/10.12361/2661-3689-04-03-51

Refbacks

  • 当前没有refback。