首页出版说明中文期刊中文图书环宇英文官网付款页面

生物塑料的类型及其对环境的影响:综述

图耶 ·阿, 约瑟 夫·, 克里 斯托, 阿巴 努布
加拿大环境科学研究所

摘要


在其整个生命周期中,石油基塑料与许多环境问题有关,包括温室气体排放、海洋和陆地环境中的持久性、
污染等。另一方面,生物塑料形成了一类快速增长的聚合物材料,通常表现为传统石油基塑料的替代品。然而,生
物塑料也与温室气体排放和不利的土地利用变化等重要环境问题有关,因此有必要评估生物塑料使用对环境的真正
影响。尽管如此,尽管许多评论都讨论了生物塑料,但很少有人全面而同时地解决生物塑料对环境的利弊。本综述
文章的主要重点是解决目前研究中的这一差距。为此,本次审查解决了以下问题:(一)目前在工业中商业使用或正
在开发的不同类型的生物塑料是什么?(二)是真正对环境有益的生物塑料。总体而言,这篇评论文章中讨论的研
究表明,与传统塑料相比,与生物塑料相关的危害没有那么严重。此外,随着新型生物塑料的开发,未来的研究必
须进行彻底的生命周期和土地利用变化分析,以确认这些新材料的生态友好性。这些研究将帮助决策者确定使用新
一代生物塑料是否确实对环境有益。

关键词


生物塑料;环境;生命周期评估;石油基塑料

全文:

PDF


参考


[1]J.A. Brydson, Plastics materials: introduction and

historical development, in: J.A. Brydson (Ed.), Plastics

Materials, seventh ed., Elsevier, Amsterdam, 1999, pp. 1–18.

[2]B. Gervet, The Use of Crude Oil in Plastic Making

Contributes to Global Warming, Lulea University of

Technology, Lulea, 2007.

[3]A. Buis, The atmosphere: getting a handle on carbon

dioxide, NASA Glob. Clim. Change (2019 October 9).

[4]J.O. Akindoyo, M.D. Beg, S. Ghazali, M. Islam, N.

Jeyaratnam, A. Yuvaraj, Polyurethane types, synthesis and

applications–a review, RSC Adv. 6 (115) (2016) 114453–

114482.

[5]N.H. Bashir, Plastic problem in Africa, Jpn. J. Vet.

Res. 61 (Supplement) (2013) S1–S11.

[6]R. Crawford, General properties of plastics, in: R.

Crawford (Ed.), Engineering Plastics, third ed., Elsevier,

Amsterdam, 1998, pp. 1–40.

[7]P. Kuhn, D. Semeril, D. Matt, M.J. Chetcuti, P. Lutz,

Structure–reactivity relationships in SHOP-type complexes:

tunable catalysts for the oligomerisation and polymerisation of

ethylene, Dalton Trans. (5) (2007) 515–528.

[8]T.A. Saleh, V.K. Gupta, Nanomaterial and Polymer

Membranes: Synthesis, Characterization, and Applications,

Elsevier, Amsterdam, 2016.

[9]M. Armand, The history of polymer electrolytes, Solid

State Ionics 69 (3-4) (1994) 309–319.

[10]T.A. Hottle, M.M. Bilec, A.E. Landis, Sustainability

assessments of bio-based polymers, Polym. Degrad. Stabil. 98

(9) (2013) 1898–1907.

[11]L. Wang, P. White, Structure and properties of

amylose, amylopectin, Cereal Chem. 71 (3) (1994) 263–268.

[12]L. Avrous, C. Fringant, L. Moro, Starch-based

biodegradable materials suitable for thermoforming packaging,

Starch 53 (8) (2001) 368–371.

[13]S. Pratt, L.-J. Vandi, D. Gapes, A. Werker, A.

Oehmen, B. Laycock, Polyhydroxyalkanoate (PHA) Bioplastics

from Organic Waste. Biorefinery, Springer, Cham, 2019, pp.

615–638.

[14]S. Vigneswari, K. Bhubalan, A. Amirul, Design

and tailoring of polyhydroxyalkanoate-based biomaterials

containing 4-hydroxybutyrate monomer, in: Biotechnology

and Bioinformatics: Advances and Applications for Bioenergy,

Bioremediation and Biopharmaceutical Research, Apple

Academic Press, Palm Bay, 2014, p. 281.

[15]L. Semprini, G.D. Hopkins, P.V. Roberts, D.

Grbic-Galic, P.L. McCarty, A field evaluation of in-situ

biodegradation of chlorinated ethenes: Part 3, studies of

competitive inhibition, Groundwater 29 (2) (1991) 239–250.




DOI: http://dx.doi.org/10.12361/2661-3689-04-03-52

Refbacks

  • 当前没有refback。