SBF 对植入物用多孔钛构件循环压缩性能的影响
摘要
件在模拟体液(SBF)中的循环压缩行为。以复型浸渍法制备的多孔钛构件为研究对象。空气中的压缩试验表明,多
孔体的屈服强度平均为 8MPa,弹性模量约为 180MPa,这与松质骨应用兼容。在 10%应变后,多孔结构塑性变形,
产生长平台区域。压缩疲劳试验表明,在较高应力水平下,多孔钛在 SBF 中比在空气中更早失效。相比之下,多孔基
材的疲劳极限为 2MPa,不受 SBF 介质的影响。在 SBF 中进行 1000 万次循环后,通过 SBF 的再沉淀,在多孔钛表面
部分形成磷酸钙层。EDS 分析表明,Ca/P 原子比为 1.44,接近β-TCP 和 HA 相,这些相有利于骨组织向内生长。
关键词
全文:
PDF参考
[1] Tennison M, Caleb RS, Nicholas KS, Alison KK, Siran MK, Wael KB. (2015). Prevalence and Perioperative
Outcomes of Off-Label Total Hip and Knee Arthroplasty in
the United States, 2000–2010. The Journal of Arthroplasty, 30 (11): 1872-1878. [2] Andy FZ, Paymon R, Kevin CC. (2018). Advances
in Proximal Interphalangeal Joint Arthroplasty:
Biomechanics andBiomaterials. Hand Clinics. 34 (2): 185- 194. [3] Karageorgiou V, Kaplan D. (2005). Porosity of 3D
biomaterial scaffolds and osteogenesis. Biomaterials. 26 (27):
5474-5491. [4] Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. (1970). Potential of ceramic materials as permanently implantable skeletal prostheses. J. Biomed. Mater. Res. 4 (3): 433-456. [5] Bai F, Wang Z, Lu J, Liu J, Chen G, Lv R, Wang J, Lin K, Zhang J, Huang XGI. (2010). The correlation
between the internal structure and vascularization of
controllable porous bioceramic materials in vivo: a
quantitative study. Tissue Eng. Part A. 16 (12): 3791-3803. [6] Ryan G, Pandit A, Apatsidis DP. (2006). Fabrication methods of porous metals for use in orthopaedic
applications. Biomaterials. 27: 2651-2670. [7] Piya AK, Raihan MM, Hossain MA. (2020). Effect
of Osteoblasts Cell Adhesion Behavior on Biomaterial
Surfaces by Atomic Force Microscope. Advances in Applied
Sciences. 5 (1): 1-10. [8] Manonukul A, Srikudvien P, Tange M. (2016). Microstructure and mechanical properties of commercially
pure titanium foam with varied cell size fabricated by replica
impregnation method. Materials Science and Engineering: A. 650: 432-437. [9] Hedayati R, Janbaz S, Sadighi M, Mohammadi- Aghdam M,Zadpoor AA. (2017). How does tissue regeneration influence the mechanical
behavior of additively manufactured porous biomaterials?
Journal of the Mechanical Behavior of Biomedical Materials. 65: 831-841. [10] Hedayati R, Yavari SA, Zadpoor AA. (2017). Fatigue crack propagation in additively manufactured porous
biomaterials. Materials Science and Engineering: C. 76: 457- 463. [11] de Krijger J, Rans C, Van Hooreweder B, Lietaert
K, Pouran B, Zadpoor AA. (2017). Effects of stress ratio on
the fatigue behavior of additively manufactured porous
biomaterials under compressive loading. Journal of
Mechanical Behavior of Biomedical Materials. 70: 7-16. [12] Li F, Li J, Huang T, Kou H, Zhou L. (2016). Compression fatigue behavior and failure mechanism of
porous titanium for biomedical applications, Materials
Science and Engineering: C. 60: 485-488. [13] Özbilen S, Liebert D, Beck T, Bram M. (2016). Fatigue behavior of highly porous titanium produced by
powder metallurgy with temporary space holders. Materials
Science and Engineering: C. 60: 446-457. [14] Kokubo T, Takadama H. (2006). How useful is
SBF in predicting in Vivo bone bioactivity? Biomaterials. 27
(15): 2907-29. [15] Robert BH. (2006). Thermal spraying of
biomaterials. Surface and Coatings Technology. 201 (5):
2012-2019. [16] Windarti T, Darmawan A, Marliana A. (2019). Synthesis of β-TCP by sol-gel method: variation of Ca/P molar ratio. IOP Conf. Ser. Material Science Engineering. 509 (1): 012147.
DOI: http://dx.doi.org/10.12361/2661-3700-04-04-111063
Refbacks
- 当前没有refback。