首页出版说明中文期刊中文图书环宇英文官网付款页面

COVID-19 和公共交通:当前评估、前景和研究需求

亚历 杭德, 奥德 俊锡
智利交通研究所

摘要


由于需求和收入空前下降,COVID-19 大流行对全球当代公共交通构成了巨大挑战。在本文中,我们综合了
截至 2020 年 6 月上旬有关公共交通和 COVID-19 大流行的关键发展的最新技术,包括世界各国政府和公共交通机构
采取的不同应对措施,以及研究需要涉及在所谓的封锁后阶段将公共交通中的传染风险降至最低的关键问题。虽然
一些国家正在尝试保持身体距离(这对大众公共交通的概念提出了挑战),但最新研究表明,对于公共交通车辆等
封闭环境,正确使用口罩可以显着降低传染。公共交通中 COVID-19 爆发的经济和社会影响超出了服务绩效和健康
风险,扩展到财务可行性、社会公平和可持续流动性。存在的风险是,如果公共交通部门被认为无法顺利过渡到大
流行后状况,那么将公共交通视为不健康的观点将会获得支持并可能持续下去。为此,本文确定了研究需求,并概
述了替代策略和情景对公共卫生影响的研究议程,特别是减少公共交通拥挤的措施。本文为交通政策制定者、规划
者和研究人员提供了概述和展望,以描绘与大流行危机对公共交通的影响相关的事态和研究需求。鉴于几个国家的
最终利害关系:恢复公共交通系统发挥其社会作用的能力,一些研究需要得到紧急关注。

关键词


COVID-19 病毒传播、可持续性、安全性、弹性、公共卫生

全文:

PDF


参考


[1] CDC . Centers for Disease Control and Prevention

(CDC); 2020. Coronavirus Disease 2019 (COVID-19): How

to Protect Yourself & Others. Last Updated July 31, 2020.

https://www.cdc.gov/coronavirus/2019-ncov/prevent-gettingsick/prevention.html?CDC_AA_refVal=https%3A%25.

[2] CDC. 2020b. “Coronavirus Disease 2019

(COVID-19): COVID-19 Employer Information for Office

Buildings.” Centers for Disease Control and Prevention

(CDC). Last Updated July 9, 2020. https://www.cdc.gov/

coronavirus/2019-ncov/community/office-buildings.html

[3] CDC. 2020c. “Coronavirus Disease 2019

(COVID-19): Protect Yourself When Using Transportation.”

Centers for Disease Control and Prevention (CDC).

Last Updated August 3, 2020. https://www.cdc.gov/

coronavirus/2019-ncov/daily-life-coping/usingtransportation.html

[4]Chorus, C. 2020. “Moral decisions and the corona

crisis – insights from the BEHAVE-research program.”

BEHAVE. March 28, 2020.

[5] Carey, C. 2020. “ViaVan offers free rides to Berlin

healthcare workers.” CitiesToday. March 25, 2020. https://

cities-today.com/viavan-offers-free-rides-for-berlinhealthcare-staff/

[ 6 ] R a h m a n A . , K u d d u s M . A . M o d e l l i n g t h e

Transmission Dynamics of COVID-19 in Six High-Burden

Countries. Biomed Res. Int. 2021;2021:5089184. doi:

10.1155/2021/5089184.

[7] Chen S., Paul R., Janies D., Murphy K., Feng T., Thill

J.C. Exploring feasibility of multivariate deep learning models

in predicting COVID-19 epidemic. Front. Public Health.

2021;9:661615. doi: 10.3389/fpubh.2021.661615.

[8]Y ang S., Liu Y., Chen K., Li T., Huang Y., Chen

X., Qi P., Xu Y., Yu F., Yang Y., et al. A dynamic model

of the Coronavirus Disease 2019 outbreak to analyze the

effectiveness of control measures. Medicine. 2021;100:e23925.

doi: 10.1097/MD.0000000000023925.

[9] Meng F., Gong W., Liang J., Li X., Zeng Y., Yang L.

Impact of different control policies for COVID-19 outbreak on

the air transportation industry: A comparison between China,

the US and Singapore. PLoS ONE. 2021;16:e0248361. doi:

10.1371/journal.pone.0248361.

[10] Chen Z., Shu Z., Huang X., Peng K., Pan J.

Modelling analysis of COVID-19 transmission and the state

of emergency in Japan. Int. J. Environ. Res. Public Health.

2021;18:6858. doi: 10.3390/ijerph18136858.




DOI: http://dx.doi.org/10.12361/2661-3700-04-05-113783

Refbacks

  • 当前没有refback。