首页出版说明中文期刊中文图书环宇英文官网付款页面

如何利用“大数据”加强拥堵管理

卡尔 森·, 何 大娜, 丹尼 尔·, 皮特 ·纽
澳大利亚科廷大学可持续发展政策研究所

摘要


交通拥堵是世界各地交通规划者和管理者面临的一个关键问题,许多人现在都在问是否有任何有前途的技术
可以提供新的解决方案。在美国,2012 年的拥堵成本为 1210 亿美元,仅在 2015 年,澳大利亚首都的拥堵成本就估
计为 160 亿美元,预计到 2030 年将增加到 370 亿美元。随着数据的可用性和分析大型数据集的能力的快速增长,本
文研究了“大数据在帮助拥堵管理方面可以发挥什么作用?” 人们对“大数据”产生了极大的兴趣和炒作,本文总
结了对其帮助缓解拥堵价值的调查。本文探讨了新兴类型的大型数据集,考虑了未来车辆和交通基础设施将如何获
取和共享数据,并探讨了一些相关的挑战。尽管大数据的机遇尚未完全实现,但很明显,它为世界各地的交通规划
者和管理者提供了一个重要的工具,可以帮助他们管理拥堵。这项研究基于可持续建筑环境国家研究中心(SBEnrc)
的研究。

关键词


大数据;预测性拥塞管理;技术支持的交通

全文:

PDF


参考


[1] Texas A&M Transportation Institute 2013, ‘As

traffic jams worsen, commuters allow extra time for urgent

trips’, Texas A&M University, February 5.

[2] Bureau of Infrastructure, Transport and Regional

Economics (BITRE) 2015, Traffic and congestion cost trends

for Australian capital cities, Commonwealth of Australia,

Canberra. (ISBN 978-1-925216-99-8)

[3] Mullich, J. 2013, ‘Drivers avoid traffic jams with

Big Data and Analytics’, Bloomberg L. P., New York.

[4] Hotz, R. L. 2011, ‘The hidden toll of traffic jams’,

The Wall Street Journal, November 8.

[5] BITRE 2014, ‘New traffic data sources – An

overview’,Australian Department of Infrastructure and

Regional Development, Canberra.

[6] Transmax 2015, ‘Streams ITS’, Transmax Pty Ltd

2015.

[7] International Transport Forum 2015, ‘Big Data and

Transport’, International Transport Forum.

[8] Hassanien, A. E., Azar, A. T., Snasael, V., Kacprzyk,

J., Abawajy, J. H. (ed) 2015, op. cit. ISBN: 978-3-319-

11056-1.

[9] van Oort, N. & Cats, O. 2015, ‘Improving public

transport decision making, planning and operations by using

Big Data: Cases from Sweden and the Netherlands’, IEEE

18th International Conference on Intelligent Transportation

Systems. DOI 10.1109/ITSC.2015.1.

[10] Carter, K. B. 2014, Actionable Intelligence: A guide

to delivering business results with Big Data fast!, John Wiley

& Sons, Singapore. (ISBN: 1118920651)

[11] Sawyers, P. 2015, ‘How Microsoft’s using

big data to predict traffic jams up to an hour in advance,

Venturebest, April.

[12] van Oort, N. and Cats, O. 2015, op. cit. DOI

10.1109/ITSC.2015.1.

[13] Fernando, B., Gray, E., Kellner, J. 2013, ‘A

review of current traffic congestion management in the City of

Sydney’, Infrastructure Australia, Canberra.

[14] Main Roads WA 2014, ‘SCATS’, Government of

Western Australia, Perth.

[15] Lu, H. P., Sun, Z. Y., Qu, W. C. 2014, ‘Big Data_xfffe_Driven Based Real-Time Traffic Flow State Identification and

Prediction’, Discrete Dynamics in Nature and Society, vol 1.

(DOI: 10.1155/2015/284906)

[16] Jie Xu et al. 2015, ‘Mining the Situation:

Spatiotemporal Traffic Prediction with Big Data’, IEEE

Journal of Selected Topics in Signal Processing, vol. 9, no. 4.

[17] Hossain, M. 2012, ‘A Bayesian network based

framework for real-time crash prediction on the basic

freeway segments of urban expressways’, Accident

Analysis & Prevention, vol. 45. (http://dx.doi.org/10.1016/

j.aap.2011.08.004)

[18] Highway Engineering Australia 2015, ‘Big data:

The key to unlocking the future of traffic, transport and

infrastructure’, HEA, vol. 47, no. 2, pp. 40-41.

[19] Horvitz, E. 2011, ‘Predictive Analytics for

Traffic’, Microsoft Research, Sept 26.

[20] Ma, X., Wu, Y. J., Wang, Y., Chen, F. and Liu, J.

2013, ‘Mining smart card data for transit riders’ travel

patterns’, Transportation Research Part C: Emerging

Technologies, Vol. 36, pp. 1-12, http://dx.doi.org/10.1016/

j.trc.2013.07.010.

[21] Zhao, J., Rahbee A. and Wilson, N. H. M. 2007,

‘Estimating rail passenger trip origin-destination matrix

using automatic data collection systems’, Computer Aided

Civil and Infra. Eng., Vol. 22, pp. 376-387. (DOI: 10.1111/

j.1467-8667.2007.00494.x)

[22] Berkow, M., El-Geneidy, A. M., Bertini, R. L. and

Crout, D. 2009, ‘Beyond generating transit performance

measures’, Transportation Research Record, Vol. 2111, pp.

158-168. (DOI: 10.3141/2111-18)

[23] Fiori, A., Mignone, A., Rospo, G. 2016, ‘DeCoClu:

Density consensus clustering approach for public transport

data’, Information Sciences, vol. 328, no. 1, pp. 378-388.

[24] Weeratunga, K. and Somers, A. 2015, Connected

vehicles: Are we ready?, Main Roads Western Australia

internal report, Perth.

[25] Asian Development Bank 2016, ‘Safety and

IntelligentTransport Systems Development in the People’s

Republic of China’, Asian Development Bank, Section B. 8.4.

[26] National Highway Traffic Safety Administration

2016, ‘US DOT advances deployment of connected vehicle

technology to prevent hundreds of thousands of crashes’,

United States Department of Transportation, Washington DC.

[27] Herndon, Virginia. Audi USA Homepage, Press

Release (August 15, 2016) “Audi announces the first

vehicle to infrastructure (V2I) service – the new Traffic light

information system”.

[28] Zurschmeide, J. 2015, ‘Stop wasting gas in the

city with the app that knows when traffic lights will change’,

Digital Trends.

[29] ACMA 2016, ‘Proposed regulatory measures

for the introduction of C-ITS in Australia’, Australian

Communications and Media Authority, Australian

Government, accessed 25 Jan 2017.

[30] ACMA 2016, ‘Proposed regulatory measures for

the introduction of C-ITS in Australia’, op. cit.

[31] TCA 2017, ‘Cooperative Intelligent Transport

Systems (CITS)’, Transport Certification Australia,

Australian Government, accessed 25 Jan 2017.

[32] Centre for Road Safety 2016, ‘Cooperative

Intelligent Transport Initiative’, NSW Government, accessed

25 Jan 2015.

[33] Weeratunga, K. and Somers, A. 2015, Connected

vehicles: Are we ready?, op. cit.

[34] International Transport Forum 2015, ‘Big Data and

Transport’, op. cit.

[35] CSA 2012, Top ten Big Data Security and Privacy

Challenges, Cloud Security Alliance, Rolling Meadows,

Illinois.

[36] CSA 2012, Top ten Big Data Security and Privacy

Challenges, op. cit.

[37] OAIC 2015, Consultation draft: Guide to Big Data

and the Australian Privacy Principles, Office of the Australian

Information Commissioner, Canberra.

[38] OAIC 2015, Consultation draft: Guide to Big Data

and the Australian Privacy Principles, op. cit.

[39] OAIC 2016, Privacy business resource 4: Deidentification of data and information, Office of the Australian

Information Commissioner, Canberra.




DOI: http://dx.doi.org/10.12361/2661-3700-04-08-118866

Refbacks

  • 当前没有refback。