首页出版说明中文期刊中文图书环宇英文官网付款页面

用回归模型预测水泥和废玻璃掺合料稳定黑棉土的CBR值

Ibrahim Ikara*1, Abbagana Mohammed1, Ali Kundiri2
1、尼日利亚包奇巴勒瓦大学土木工程系
2、尼日利亚迈杜古里市迈杜古丽大学土木与水利工程系

摘要


多年来,在公路建设中,为了改善土壤的工程财产,路基和底基层土壤稳定一直被用作首要和主要的过程之一。
这些层的强度由它们的加州承载比(CBR)值表示,这是非常昂贵和耗时的。为了克服这种情况,本研究提出了一
种使用多元回归分析(MRA)预测水泥和废玻璃掺合料稳定的黑棉土的浸泡加州承载比(CBR)值的方法。实验测
试结果,如阿太堡极限(液限(LL)、塑性极限(PL)和塑性指数(PI))、两种压实作用的压实特性,即标准普
氏压实剂(SP)和改良普氏压实法(MP)(最大干密度(MDD)和最佳含水量(OMC))、CBR、废玻璃(WG)
含量和水泥含量(Cm),从尼日利亚包奇巴勒瓦大学的实验室获得的数据已被用于开发多元回归模型。以加州承载
比为因变量,以液限、塑限、最大干密度、最佳含水量、废玻璃含量和水泥含量为自变量。回归分析计算了每个可
能模型的误差均方(MSE),并且没有为最佳回归方程选择具有大 MSE 的模型。对于六变量模型(Cm、WG、LL、
PL、OMCsp、MDDsp)和(Cm,WG、PL、LL、OMCmp、MDDmp),最佳模型具有出现的 MSE 的最小值,其中
对应的倍数确定系数 R2 = 0.98 和 0.94 的较高值。拟合回归模型的性能评估表明,上述变量之间存在很强的相关性
(R2
=0.89-0.98),根据本研究得出的模型方程对响应进行了很好的预测,因为该方程可用于估算具有类似岩土财产
的其他黑棉土的浸水 CBR。

关键词


土壤稳定;黑棉土;废玻璃外加剂;回归模型

全文:

PDF


参考


[1] Patel, M. A., and Patel, H. S. (2012). A review on

effects of stabilizing agents for stabilization of weak soil. Civil

and Environmental Research, 2 (6), 1-7.

[2] Ramasubbarao, G. V., & Sankar, G. S. (2013).

Predicting soaked CBR value of fine-grained soils using

index and compaction characteristics. Jordan Journal of Civil

Engineering, 7 (3), 354-360.

[3] Shirur, N. B., & Hiremath, S. G. (2014). Establishing

relationship between CBR value and physical properties of

soil. IOSR journal of mechanical and civil engineering, 11 (5),

26-30.

[4] Satyanarayana Reddy, C. N. V., & Pavani, K.

(2006).Mechanically stabilised soils-regression equation for

CBR evaluation. In Proceedings of the Indian geotechnical

conference, Chennai, India (pp. 731-734).

[5] Gregory, G. H., & Cross, S. A. (2007). Correlation

of CBR with shear strength parameters. In Proceedings of

9th International Conference on Low Volume Roads, Austin,

Texas

[6] Vinod, P., & Reena, C. (2008). Prediction of CBR

value of lateritic soils using liquid limit and gradation

characteristics data. Highway Research Journal, IRC, 1 (1),

89-98.

[7] Patel, R. S., & Desai, M. D. (2010). CBR predicted

by index properties for alluvial soils of South Gujarat. In

Proceedings of the Indian Geotechnical conference, Mumbai

(pp. 79-82).

[8] Yildrim, B. and Gunaydin, O. (2011). Estimation

of CBR by Soft Computing Systems, Expert Systems with

Applications, ELSEVIER, 38 (5): 6381-6391.

[9] Patel, M. A., & Patel, H. S. (2012). Experimental

Study to Correlate the Test Results of PBT, UCS, and CBR

with DCP on Various soils in soaked condition. International

Journal of Engineering (IJE), 6(5), 244.

[10] Venkatasubramanian, C., & Dhinakaran, G. (2011).

ANNmodel for predicting CBR from index properties of soils.

International Journal of Civil & Structural Engineering, 2 (2),

614-620.

[11] Sabat, A. K. (2013). Prediction of California bearing

ratio of a soil stabilized with lime and quarry dust using

artificial neural network. Electronic Journal of Geotechnical

Engineering, 18, 3261-3272.

[12] Alawi, M., and Rajab, M. (2013). Prediction of

California bearing ratio of sub-base layer using multiple linear

regression models. Road Materials and Pavement Design, 14

(1), 211-219.

[13] Talukdar, D. K. (2014). A Study of Correlation

between California Bearing Ratio (CBR) Values with

Other Properties of Soil. International Journal of Emerging

Technology and Advanced Engineering, 4 (1), 559-562.

[14] Ikara, I. A., Kundiri, A. M., & Mohammed, A. (2015).

Effects of Waste Glass (WG) on the Strength Characteristics

of Cement Stabilized Expansive Soil. American Journal of

Engineering Research (AJER), 4, 33-41.

[15] BS 1377 (1990). Methods of Testing Soils for Civil

Engineering Purposes. British Standard Specification, London.

[16] BS 1924 (1990). Methods of Tests for Stabilized

Soils. British Standard Specification. London.

[17] Ugbe, F. C. (2012). Predicting Compaction

Characteristics of Lateritic Soil of Western Niger Delta,

Nigeria. Research Journal of Environmental and Earth

Sciences, 4 (5), 553-559.

[18] Alam MZ, Ameem ES, Muyibi SA, Kabbash NA

(2009) the factors affecting the performance of activated

carbon prepared from oil palm empty fruit bunches for

adsorption of phenol. Chemical Engineering Journal doi:

10.106/J.cej.2009.07.033.

[19] Montgomery DC, Runger GC (2011) Applied

statistics and probability for engineers. 5th edn. Wiley and

Sons, Asia, Pte, Ltd.




DOI: http://dx.doi.org/10.12361/2661-3700-04-08-118867

Refbacks

  • 当前没有refback。