首页出版说明中文期刊中文图书环宇英文官网付款页面

公共交通中的大数据:来源和方法综述

辛西 娅·, 苏西 洛·
美国城市与区域规划学院

摘要


大数据的收集作为传统资源密集型人工数据收集方法的替代方案,在过去十年中变得更加可行。此类数据的可用
性,加上更复杂的预测统计技术,促使人们更加关注这些数据的应用,尤其是在交通分析方面。在交通文献中,人们越
来越重视将通常收集的公共交通数据来源开发成更强大的分析工具。人们普遍认为,将大数据应用于交通问题将产生以
前通过传统交通数据集无法获得的新见解。然而,关于大数据的构成、大数据收集和应用的伦理含义以及如何最好地利
用新兴数据集,存在许多歧义。探索大数据的现有文献没有提供清晰一致的定义。虽然大数据的收集量不断增加,其在
研究和实践中的应用也在不断扩大,但应用于此类数据的分析方法之间存在显着差异。本文总结了最近关于大数据来源
的文献及其在解决公共交通问题时常用的方法。我们评估主要的大数据源、最常研究的主题和采用的方法。文献表明智
能卡和自动化数据是研究人员最常用于进行公共交通分析的两个大数据源。审查的研究表明,大数据已在很大程度上用
于了解公交用户的出行行为和评估公共交通服务质量。文献中报道的技术在很大程度上反映了那些用于较小数据集的技
术。通常与大数据相关的更高级统计方法的应用仅限于少数研究。为了充分发挥大数据的价值,需要采用新的分析方法。

关键词


大数据、公共交通、交通分析、公交规划、规划方法、统计

全文:

PDF


参考


1. Briand, A.-S., Côme, E., Trépanier, M., & Oukhellou, L. (2017). Analyzing year-to-year changes in public transport

passenger behaviour using smart card data. Transportation

Research Part C: Emerging Technologies, 79, 274–289. doi:10.1016/j.trc.2017.03.021

2. Cai, H., & Xu, M. (2013). Greenhouse gas implications

of fleet electrification based on big datainformed individual

travel patterns. Environmental Science & Technology, 47(16), 9035–9043. doi:10.1021/es401008f

3. Faroqi, H., Mesbah, M., Kim, J., & Tavassoli, A. (2018). A model for measuring activity similarity between public

transit passengers using smart card data. Travel Behaviour

and Society, 13, 11– 25. doi:10.1016/j.tbs.2018.05.004

4. Ferreira, J. C., Monteiro, V., Afonso, J. A., & Afonso, J. L. (2016). Methodology for knowledge extraction from mobility

big data. In Advances in intelligent systems and computing. Distributed computing and artificial intelligence, 13th

international conference (pp. 97–105). doi:10.1007/978-3-319-40162- 1_11

5. Günther, R., Wenzel, T., Wegner, M., & Rettig, R. (2017). Big data driven dynamic driving cycle development

for busses in urban public transportation. Transportation

Research Part D: Transport and Environment, 51, 276–289. doi:10.1016/j.trd.2017.01.009

6. Hanft, J., Iyer, S., Levine, B., & Reddy, A. (2016). Transforming bus service planning using integrated electronic

data sources at NYC transit. Journal of Public Transportation, 19(2), 89–108. doi:10.5038/ 2375-0901.19.2.6

7. He, L., Agard, B., & Trépanier, M. (2018). A

classification of public transit users with smart card data

based on time series distance metrics and a hierarchical

clustering method. Transportmetrica A: Transport Science, 1–20. doi:10.1080/23249935.2018.1479722

8. Kumar, P., Khani, A., & He, Q. (2018). A robust method

for estimating transit passenger trajectories using automated

data. Transportation Research Part C: Emerging Technologies, 95, 731–747. doi:10.1016/j.trc.2018.08.006

9. Lantz, K., Khan, S., Ngo, L. B., Chowdhury, M., Donaher, S., & Apon, A. (2015). Potentials of online media and

location-based big data for urban transit networks in

developing countries. Transportation Research Record: Journal of the Transportation Research Board, 2537, 52–61.

doi:10.3141/2537-06

10. Li, R., Kido, A., & Wang, S. (2015). Evaluation index

development for intelligent transportation system in smart

community based on big data. Advances in Mechanical

Engineering, 7(2), 541651. doi:10. 1155/2014/541651




DOI: http://dx.doi.org/10.12361/2661-3700-04-09-127063

Refbacks

  • 当前没有refback。