仪表化自行车及其在交通行为、安全和维护研究中的应用
摘要
表化自行车进行交通相关研究的文献越来越受欢迎,尤其是在过去 6 年中。随着这些研究的数量和成熟度的增加,现在
似乎是回顾自行车的使用方式、传感器和方法的选择以及未来工作需要填补的空白的好时机。因此,本文献综述的目的
是 1) 讨论与方法相关的传感器选择,2) 回顾使用仪表自行车研究的主题的结果,以及 3) 讨论文献中的差距。作者在
两个数据库中搜索了使用仪表化自行车的基于交通的文献,共有 75 篇文章符合纳入标准。文献分为九个重点领域,最
常见的主题是电动自行车、车辆经过骑自行车的人和重大事件。结果表明,装有仪表的自行车是多功能工具,可以阐明
骑车人行为和安全的各个方面,以及如何为他们维护系统。这些研究使用了各种传感器,但相机、GPS 和加速度计是最
常见的。该评论强调了研究技术(自然主义与准自然主义与其他)对传感器选择的重要性,其中 GPS 和/或相机对任何
自然主义研究都至关重要。然而,由于处理数据的难度和耗时性,GPS 和相机是最具挑战性的数据类型。传感器的变化
也表明需要对设置进行标准化,以便在国际范围内比较数据。本文还讨论了未来研究的领域,包括超车距离研究的新视
角以及将仪表化自行车纳入互联车辆/基础设施空间。
关键词
全文:
PDF参考
1. Angel-Domenech, A., Garcia, A., Agustin-Gomez, F., & Llorca, C. (2014). Traffic conflict analysis by an
instrumented bicycle on cycle tracks of Valencia. In 3rd
International Cycling Safety Conference (pp. 1–19). 2. Beck, B., Chong, D., Olivier, J., Perkins, M., Tsay, A., Rushford, A., … Johnson, M. (2019). How much space do
drivers provide when passing cyclists? Understanding the
impact of motor vehicle and infrastructure characteristics on
passing distance. Accident Analysis & Prevention, 128, 253–
260. doi:10.1016/J.AAP.2019.03.007
3. Cleland, B. S., Walton, D., & Thomas, J. A. (2005). The relative effects of road markings on cycle stability. Safety
Science, 43(2), 75–89. doi:10.1016/J.SSCI.2005.01.001
4. Dozza, M., Bianchi Piccinini, G. F., & Werneke, J. (2016). Using naturalistic data to assess e-cyclist behavior. Transportation Research Part F: Traffic Psychology and
Behaviour, 41, 217–226. doi:10. 1016/J.TRF.2015.04.003
5. Huertas-Leyva, P., Dozza, M., & Baldanzini, N. (2018). Investigating cycling kinematics and braking maneuvers in the real world: E-bikes make cyclists move
faster, brake harder, and experience new conflicts.
Transportation Research Part F: Traffic Psychology and
Behaviour, 54, 211–222. doi:10.1016/J.TRF.2018.02.008
6. Ithana, T., & Vanderschuren, M. (2013). Investigation
of separation distances between cyclists and motorists in Cape
Town. In Abstracts of the 32nd Southern African Transport
Conference (pp. 464–474). Pretoria. Retrieved from
https://www.researchgate.net/publication/262932962
7. Jahangiri, A., Elhenawy, M., Rakha, H., & Dingus, T. A. (2016). Investigating cyclist violations at signalcontrolled
intersections using naturalistic cycling data. In 2016 IEEE
19th International Conference on Intelligent Transportation Systems (ITSC) (pp. 2619–2624). IEEE. 8. Love, D. C., Breaud, A., Burns, S., Margulies, J., Romano, M., & Lawrence, R. (2012). Is the three-foot bicycle
passing law working in Baltimore, Maryland? Accident
Analysis & Prevention, 48, 451– 456. doi:10.1016/J.AAP.2012.03.002
9. Ma, X., & Luo, D. (2016). Modeling cyclist
acceleration process for bicycle traffic simulation using
naturalistic data. Transportation Research Part F: Traffic
Psychology and Behaviour, 40, 130–144. doi:10. 1016/J.TRF.2016.04.009
10. Pucher, J., & Buehler, R. (2008). Cycling for everyone: Lessons from Europe. Transportation Research
Record, 2074, 58–65. doi:10.3141/2074-08
11. Rios, I., Golab, L., & Keshav, S. (2016). Analyzing
the usage patterns of electric bicycles. Proceedings of the
Workshop on Electric Vehicle Systems, Data, and
Applications - EV-SYS ’16 (pp. 1–6). New York, NY: ACM
Press. doi:10.1145/2939953.2939955
DOI: http://dx.doi.org/10.12361/2661-3700-04-09-127064
Refbacks
- 当前没有refback。