首页出版说明中文期刊中文图书环宇英文官网付款页面

代谢组学在动脉粥样硬化和心血管疾病 流行病学研究中的应用

原田 美穗, 竹 林诚, 饭 田彻
东京大学医学中心

摘要


代谢组学已发展成为研究动脉粥样硬化和心血管疾病的复杂病理生理学的有力工具。许多流行病学研究已
经应用这种技术来准确和全面地评估环境因素对健康结果的影响,这曾经是一个永恒的挑战。代谢物被定义为小分
子,它们是由细胞内发生的多种酶催化的代谢反应的中间产物。由于遗传变异和环境,它们使我们能够探索基因-
环境的相互作用,并更好地了解心血管疾病等多因素疾病。这篇综述文章重点介绍了世界各地著名的前瞻性队列研
究的结果,这些研究已将代谢组学用于广泛的目的,包括发现生物标志物、改善心血管风险预测和早期疾病诊断,
以及探索疾病发作和进展的详细机制。然而,在临床应用中仍然存在技术挑战。一个限制是由于基于每项研究的判
断而使用的各种分析平台;需要在不同平台之间进行比较评估,以便在外部正确解释和验证每个数据。其次,在大
多数高通量代谢组学分析研究中获得的代谢物水平通常是半定量而不是完全定量的浓度,这使得难以比较和组合不
同研究之间的结果并确定实际使用的水平。2014年,代谢组学研究联盟成立,有望率先攻克这些问题。

关键词


代谢组学;流行病学;心血管疾病;动脉粥样硬化

全文:

PDF


参考


[1]Griffin JL, Atherton H, Shockcor J, Atzori L.

Metabolomics as a tool for cardiac research. Nat Rev Cardiol,

2011; 8: 630-643

[2]Lewis GD, Asnani A, Gerszten RE. Application

of metabolomics to cardiovascular biomarker and pathway

discovery. J Am Coll Cardiol, 2008; 52: 117-123

[3]Shah SH, Kraus WE, Newgard CB. Metabolomic

profiling for the identification of novel biomarkers and

mechanisms related to common cardiovascular diseases: form

and function. Circulation, 2012; 126: 1110-1120

[4]McGarrah RW, Crown SB, Zhang GF, Shah SH,

Newgard CB. Cardiovascular Metabolomics. Circulation

research, 2018; 122:1238-1258

[5]Cheng S, Shah SH, Corwin EJ, Fiehn O, Fitzgerald RL,

Gerszten RE, Illig T, Rhee EP, Srinivas PR, Wang TJ, Jain M,

American Heart Association Council on Functional Genomics

and Translational Biology; Council on Cardiovascular and

Stroke Nursing; Council on Clinical Cardiology; and Stroke

Council. Potential Impact and Study Considerations of

Metabolomics in Cardiovascular Health and Disease : A

Scientific Statement From the American Heart Association.

Circ Cardiovasc Genet, 2017; 10

[6]Pauling L, Robinson AB, Teranishi R, Cary P.

Quantitative analysis of urine vapor and breath by gasliquid partition chromatography. Proc Natl Acad Sci U S A.

1971;68:2374–6.

[7]Horning EC, Horning MG. Metabolic profiles: gasphase methods for analysis of metabolites. Clin Chem.

1971;17:802–9.

[8]Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’:

understanding the metabolic responses of living systems

to pathophysiological stimuli via multivariate statistical

analysis of biological NMR spectroscopic data. Xenobiotica.

1999;29:1181–9.

[9]Raamsdonk LM, Teusink B, Broadhurst D, et al. A

functional genomics strategy that uses metabolome data to

reveal the phenotype of silent mutations. Nat Biotechnol.

2001;19:45–50.

[10]Allen J, Davey HM, Broadhurst D, et al. Highthroughput classification of yeast mutants for functional

genomics using metabolic footprinting. Nat Biotechnol.

2003;21:692–6.




DOI: http://dx.doi.org/10.12361/2705-0459-04-07-93353

Refbacks

  • 当前没有refback。