首页出版说明中文期刊中文图书环宇英文官网付款页面

肠道菌群代谢产物抑制结直肠癌的研究进展

刘 成成, 张 彦, 姜 霞*, 李 中信, 赵 增仁
河北医科大学第一医院普外科,河北省大肠癌精准诊断与治疗重点实验室 河北石家庄 050031

摘要


摘要:结直肠癌是全球高发的恶性肿瘤之一。研究显示,肠道菌群及其代谢产物与结直肠癌的发生发展息息相关。在消化道中结直肠拥有数量和丰度最多的细菌,用于维持宿主肠道生态平衡、参与营养物质代谢及疾病进展等。近些年的研究发现肠道菌群的代谢产物,如短链脂肪酸、熊去氧胆酸、胞外多糖、β-半乳糖苷酶等,通过不同的分子机制抑制结直肠癌的发生发展。目前较少见到肠道菌群代谢产物与结直肠癌的综述,因此本文整理总结了代表性代谢产物对结直肠癌的抑制作用及分子机制。

关键词


关键词:结直肠癌;短链脂肪酸;熊去氧胆酸;胞外多糖;β-半乳糖苷酶

全文:

PDF


参考


[1] Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans[J]. Cell, 2016,164(3):337-340. [2] 潘杰,刘来浩,牟建伟.肠道菌群与人类健康研究进展[J].山东师范大学学报(自然科学版),2021,36(04):337-365.[3] 鲜凌瑾,唐勇.肠道细菌微生态与人类疾病关系研究进展[J].微生物学免疫学进展,2015,43(04):75-79.[4] Chen Y, Cao YS, Liu XH. Short chain fatty acids and intestinal microflora[J]. Jiangxi Sci,2006(01):38-40+69. [5] 李翠茹,彭买姣,谭周进.肠道菌群相关短链脂肪酸的研究进展[J].世界华人消化杂志,2022,30(13):562-570.[6] Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota[J]. Environ Microbiol, 2017,19(1):29-41. [7] 王朗玥,赵琦,吴华星.肠道微生物群衍生的代谢产物调控结直肠癌的新进展[J].实用肿瘤学杂志,2021,35(06):547-551.[8] Hinnebusch BF, Meng S, Wu JT, et al. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation[J]. J Nutr, 2002,132(5):1012-1017.[9] 杨荣,张彤心,钱莉.短链脂肪酸抗癌机制研究进展[J].中国肿瘤临床,2022,49(08):417-421.[10] Canani RB, Costanzo MD, Leone L, et al. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases[J]. World J Gastroenterol, 2011,17(12):1519-1528. [11] Waby JS, Chirakkal H, Yu C, et al. Sp1 acetylation is associated with loss of DNA binding at promoters associated with cell cycle arrest and cell death in a colon cell line[J]. Mol Cancer, 2010,9:275. [12] Lazarova DL, Chiaro C, Bordonaro M. Butyrate induced changes in Wnt-signaling specific gene expression in colorectal cancer cells[J]. BMC Res Notes, 2014, 9,7:226. [13] 杨艳青,李灿委,杨自忠,等.肠道菌群代谢物——短链脂肪酸的研究进展[J].实用医学杂志,2022,38(14):1834-1837.[14] Hou H, Chen D, Zhang K, et al. Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation[J]? Cancer Lett, 2022,1,526:225-235.[15] Chun E, Lavoie S, Fonseca-Pereira D, et al. Metabolite-Sensing Receptor Ffar2 Regulates Colonic Group 3 Innate Lymphoid Cells and Gut Immunity[J]. Immunity, 2019,19,51(5):871-884.e6.[16] Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013,504(7480):451-455. [17] 高广琦,张和平.益生菌调控肠道菌群对免疫检查点阻断治疗的影响[J].肿瘤代谢与营养电子杂志,2021,8(02):111-117+106.[18] 李进鹏,刘真真,申高飞等.胆汁酸-肠道菌群与腹泻型肠易激综合征的研究进展[J].解放军医学杂志, 2021,46(12):1258-1262.[19] Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota[J]. Gut Microbes, 2020,11(2):158-171.[20] Liu Y, Zhang S, Zhou W, et al. Secondary Bile Acids and Tumorigenesis in Colorectal Cancer[J]. Front Oncol, 2022,28,12:813745.[21] Fang Y, Yan C, Zhao Q, et al. The roles of microbial products in the development of colorectal cancer: a review[J]. Bioengineered, 2021,12(1):720-735. [22] Im E, Martinez JD. Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells[J]. J Nutr, 2004,134(2):483-486. [23] Shaulian E, Karin M. AP-1 as a regulator of cell life and death[J]. Nat Cell Biol, 2002,4(5):E131-E136. [24] Choi YH, Im EO, Suh H,et al. Apoptosis and modulation of cell cycle control by synthetic derivatives of ursodeoxycholic acid and chenodeoxycholic acid in human prostate cancer cells[J]. Cancer Lett, 2003 25,199(2):157-67.[25] Martinez JD, Stratagoules ED, LaRue JM, et al. Different bile acids exhibit distinct biological effects: the tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proliferation[J]. Nutr Cancer, 1998,31(2):111-118. [26] van Nierop FS, Scheltema MJ, Eggink HM, et al. Clinical relevance of the bile acid receptor TGR5 in metabolism[J]. Lancet Diabetes Endocrinol, 2017,5(3):224-233. [27] Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018,15(2):111-128. [28] Zhang H, Xu H, Zhang C, et al. Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis[J]. Cell Death Discov, 2021,7(1):207. [29] Patten DA, Leivers S, Chadha MJ, et al. The structure and immunomodulatory activity on intestinal epithelial cells of the EPSs isolated from Lactobacillus helveticus sp. Rosyjski and Lactobacillus acidophilus sp. 5e2[J]. Carbohydr Res, 2014,30,384:119-27.[30] 王琪,肖融,王敬,等. 乳酸菌胞外多糖对动物肠道屏障功能的调控作用及机制[J]. 动物营养学报,2021,33(7):3657-3664.[31] 王正荣,生吉萍,申琳.细菌胞外多糖的生物合成与基因控制[J].生物技术通报,2010,220(11):48-55.[32] Brockman JA,Gupta RA,Dubois RN. Activation of PPARg leads to inhibition of anchorage-independent growth of human colorectal cancer cells[J]. Gastroenterology, 1998,115(5):1049-1055[33] Deepak V, Ram Kumar Pandian S, Sivasubramaniam SD, et al. Optimization of anticancer exopolysaccharide production from probiotic Lactobacillus acidophilus by response surface methodology[J]. Prep Biochem Biotechnol, 2016,46(3):288-297.[34] 王俊永,姚蒙蒙,王晓冰,等.益生菌胞外多糖的生物活性研究进展[J].饲料工业,2020,41(22):9-11.[35] Liu CF, Tseng KC, Chiang SS, et al. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides[J]. J Sci Food Agric, 2011,91(12):2284-2291. [36] Liu CT, Chu FJ, Chou CC, et al. Antiproliferative and anticytotoxic effects of cell fractions and exopolysaccharides from Lactobacillus casei 01[J]. Mutat Res, 2011,721(2):157-162. [37] Zahran WE, Elsonbaty SM, Moawed FSM. Lactobacillus rhamnosus ATCC 7469 exopolysaccharides synergizes with low level ionizing radiation to modulate signaling molecular targets in colorectal carcinogenesis in rats[J]. Biomed Pharmacother, 2017,92:384-393. [38] 张敏,范小兵,杨虹,等.人体肠道菌群构成及重要代谢产物的研究[A]//中国生态学学会.微生物生态学研究进展—第五届微生物生态学术研讨会论文集[C].气象出版社,2003:6.[39] Li Q, Hu W, Liu WX, et al. Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-galactosidase[J]. Gastroenterology, 2021,160(4):1179-1193.e14. [40] Sangwan V, Tomar SK, Ali B, et al. Production of β-galactosidase from streptococcus thermophilus for galactooligosaccharides synthesis[J]. J Food Sci Technol, 2015,52(7):4206-4215.[41] Hickey MW, Hillier AJ, Jago GR. Transport and metabolism of lactose, glucose, and galactose in homofermentative lactobacilli[J]. Appl Environ Microbiol, 1986,51(4):825-831. [42] Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer[J]. Nat Rev Cancer, 2013,13(4):246-257. [43] Wang W, Xiao ZD, Li X, et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis[J]. Nat Cell Biol, 2015,17(4):490-499. [44] Sugimura N, Li Q, Chu ESH, et al. Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis[J]. Gut, 2021,71(10):2011-2021. [45] 于金高,李娜,王征,等.硫化氢对胃肠道的“双相”调节作用及其介导的药物效-毒转化[J].中国中药杂志,2022,47(15):3986-3993.[46] Faris P, Ferulli F, Vismara M, et al. Hydrogen sulfide-evoked intracellular Ca2+ signals in primary cultures of metastatic colorectal cancer cells[J]. Cancers (Basel), 2020,12(11):3338. [47] 宋颖.溃疡性结肠炎外周血 SOCS-3、TNF-α、NO 水平与肠道菌群多样性关系[J].热带医学杂志,2016,16(10):1283-1285+1326.[48] 彭金娥, 潘敬新.一氧化氮在肿瘤治疗中的多重作用[J].肿瘤, 2012,32(1): 70-73.[49] Mahdavi M, Laforest-Lapointe I, Massé E. Preventing Colorectal Cancer through Prebiotics[J]. Microorganisms, 2021,18,9(6):1325.[50] [许勤,吴文溪.短链脂肪酸的代谢及其在肠道外科中的应用[J].肠外与肠内营养,1999(04):218-223+246.[51] Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics[J]. Acta Pharm Sin B, 2015,5(2):99-105.[52] Pardi DS, Loftus EV Jr, Kremers WK, et al. Ursodeoxycholic acid as a chemopreventive agent in patients with ulcerative colitis and primary sclerosing cholangitis[J]. Gastroenterology, 2003,124(4):889-93. [53] [ 尤 梅 桂 . 熊 去 氧 胆 酸 的 研 究 概 况 [J]. 药 学 研 究 , 2021,40(03):199-202.[54] Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer[J]. Nat Rev Cancer, 2013,13(4):246-257.




DOI: http://dx.doi.org/10.12361/2661-3603-05-21-149976

Refbacks

  • 当前没有refback。