首页出版说明中文期刊中文图书环宇英文官网付款页面

改良石墨相氮化碳光催化性能的研究

刘 晓恬
东华大学

摘要


g-C3N4 是一种十分重要的光催化材料,因其优异的物理、化学、光学、电学性能而广受关注,被普
遍认为是可见光催化反应领域最具发展潜能的材料之一。然而,g-C3N4 虽然有占据优势的可见光响应,但是
因其比表面积小的缺陷而不能满足大范围的实际应用。目前可通过一系列的改性策略来调控光生电子 - 空穴对
的分离和载流子的迁移,来提高其光催化活性,例如前驱体改性、提高结晶度、元素掺杂、与半导体复合、形
貌结构调控等。本文介绍了 g-C3N4 光催化材料的分子结构特征、性能优势以及其制备方法,系统总结了目前
应用广泛的修饰改性策略并加以举例说明,最后,对 g-C3N4 光催化材料面临的科学技术挑战和未来研究方向
作出探讨。

关键词


g-C3N4;光催化;修饰改性

全文:

PDF


参考


[1] GUAN G, YE E, YOU M, et al. Hybridized 2D

Nanomaterials Toward Highly Efficient Photocatalysis

for Degrading Pollutants: Current Status and Future

Perspectives[J]. Small, 2020(16):1907087.

[2] 党云飞 , 卫芝贤 , 岳盼等 . 硝化甘油废水处理的

研究进展 [J]. 精细化工中间体 ,2018,48(06):6-11.

[3] Li F,Gu Q,Niu Y,et al.Hydrogen evolution from

aqueousphase photocatalytic reforming of ethylene glycol

over Pt/Ti O2catalysts: Role of Pt and product

distribution[J].Applied Surface Science,2017,391:251-258.

[4] 吴 桧 , 陈 雪 燕 , 邹 贵 容 , 熊 梦 元 , 王 奕 琛 . 石

墨相氮化碳在光催化降解领域的研究进展 [J]. 辽宁化

工 ,2021,50(09):1318-1320.

[5] 黄 正 喜 , 刘 献 平 , 吴 腊 梅 等 .Bi2

sub>O3/TiO2 纳米粒子的制备及

其光催化性能的研究 [J]. 中南民族大学学报 ( 自然科学

版 ),2016,35(1):17-22.

[6] Wang X, Maeda K, Thomas A, et al. A metal-free

polymeric photocatalyst for hydrogen production from water

under visible light[J].Nature Materials,2009,8(1):76-80.

[7] 代宏哲,高续春,张俊霞,等 . 溶剂热法制备

石墨型氮化碳及其降解苯酚研究 [J]. 化学与生物工程,

2017,34(09):19-23.

[8] Wang X,Blechert S,Antonietti M.Polymeric graphitic

carbon nitride for heterogeneous photocatalysis[J].ACS

Catalysis,2012,2(8):1596-1606.

[9] Chen W, Liu M, Wei S J, et al. Solid-state synthesis

of ultrathin MoS2 as a cocatalyst on mesoporous g-C3N4 for

excellent enhancement of visible light photoactivity. J Alloys

Compd, 2020, 836: 155401.

[10] 黎小芳 , 沈群 , 李覃 , 吕康乐 . 光催化材料石

墨相氮化碳研究进展 [J]. 中南民族大学学报 ( 自然科学

版 ),2021,40(05):441-452.

[11] KROKE E,SCHWARZ M,HORATH-BORDON

E,et al.Tri-s-triazine derivatives.Part I.From trichloro_xfffe_tri-s-triazine to graphitic C3N4

structures[J].New J Chem,2002,26(5):508-512.

[12] YAN S C,LI Z S,ZOU Z G.Photodegradation

performance of g-C3N4

fabricated by directly heating melamine[J].Langmu

ir,2009,25(17):10397-10401.

[ 1 3 ] Z H A N G G , Z H A N G J , Z H A N G M , e t

al.Polycondensation of thiourea into carbon nitride

semiconductors as visible light photocatalysts[J].J Mater

Chem,2012,22(16):8083-8091.

[14] Dong G H, Zhang L Z. Porous structure dependent

photoreactivity of graphitic carbon nitride under visible

light[J].Journal of Materials Chemistry, 2012,22(3):1160-

1166.

[15] CHENG J,HU Z,LI Q,et al.Fabrication of high

photoreactive carbon nitride nanosheets by polymerization

of amidinourea for hydrogen production[J].App Catal

B-Environ,2019,245:197-206.

[16] BOJDYS M J,MULLER J O,ANTONIETTI M,et

al.Ionothermal synthesis of crystalline,condensed,graphitic

carbon nitride[J].Chem,2008,14(27):8177-8182.

[17] DONTSOVA D,PRONKIN S,WEHLE M,et

al.Triazoles:A new class of precursors for the synthesis

of negatively charged carbon nitride derivatives[J].Chem

Mater,2015,27(15):5170-5179.

[18] GAO H,YAN S,WANG J,et al.Towards efficient

solar hydrogen production by intercalated carbon nitride

photocatalyst[J].Phys Chem Chem Phy,2013,15(41):18077-

18084.

[19] QIU C,XU Y,FAN X,et al.Highly crystalline

K-intercalated polymeric carbon nitride for visible-light

photocatalytic alkenes and alkynes deuterations[J].Adv

Sci,2019,6(1):1801403.

[20] GAO L F,WEN T,XU J Y,et al.Iron-doped carbon

nitride-type polymers as homogeneous organocatalysts for

visible light-driven hydrogen evolution[J].ACS Appl Mater

Interfaces,2016,8(1):617-624.

[21] Hu S Z,Li F Y,Fan Z P,et al. Band gap-tunable

potassium doped graphitic carbon nitride with enhanced

mineralization ability [J]. Dalton Transactions :Cambridge,

England,2015,44(3):1084-1092.

[22] WANG K,LI Q,LIU B,et al.Sulfur-doped

g-C3N4 with enhanced

photocatalytic CO2 reduction performance[J].

Appl Catal B-Environ,2015,176:44-52.

[23] XIONG T,WANG H,ZHOU Y,et al.KClmediated dual electronic channels in layered g-C3

sub>N4 for enhanced visible light photocatalytic

NO removal[J].Nanoscale,2018,10(17):8066-8074.

[24] 陈小梅 , 宋连香 , 胡育等 .g-C3N4/TiO2 异质结

光催化性能研究 [J]. 广东化工 ,2018,45(15):64-67.

[25] KARIMI M A, ILIYAT M, ATASHKADI M,

et al. Microwaveassisted synthesis of the Fe2

sub>O3/g-C3N4

nanocomposites with enhanced photocatalytic activity for

degradation of methylene blue[J]. Journal of the Chinese

Chemical Society, 2020(67):2032-2041.

[26] GUO F,SHI W,LI M,et al.2D/2D Z-scheme

heterojunction of CuInS2/g-C3

sub>N4 for enhanced visible-lightdriven photocatalytic activity towards the degradation of

tetracycline[J].Sep Purif Technol,2019,210:608-615.

[27] XU Q,ZHANG L,CHENG B,et al.S-scheme

heterojunction photocatalyst[J].Chem,2020,6(7):1543-1559.

[28] PAN H,ZHANG Y W,SHENOY V B,et al.Ab initio

study on a novel photocatalyst:Functionalized graphitic carbon

nitride nanotube[J].ACS Catal,2011,1(2):99-104.

[29] Xu G, Xu Y H, Zhou Z C, et al. Facile hydrothermal

preparation of graphitic carbon nitride supercell structures

with enhanced photodegradation activity[J]. Diamond and

Related Materials, 2019,97.

[30] Papailias I, Todorova N, Giannakopoulou T,

et al. Novel torus shaped g-C3N4

sub>photocatalysts[J]. Applied Catalysis BEnvironmental,

2020,268.

[31] ZHAO W, ZHOU H, ZHANG G, et al. Templatefree assembly of protonated g-C3N4

sub> nanosheets into microspheres with enhanced

UV-light photocatalytic activity[J]. Materials Letters,

2021(282):128698.




DOI: http://dx.doi.org/10.12361/2661-3743-04-11-113582

Refbacks

  • 当前没有refback。