改良石墨相氮化碳光催化性能的研究
摘要
遍认为是可见光催化反应领域最具发展潜能的材料之一。然而,g-C3N4 虽然有占据优势的可见光响应,但是
因其比表面积小的缺陷而不能满足大范围的实际应用。目前可通过一系列的改性策略来调控光生电子 - 空穴对
的分离和载流子的迁移,来提高其光催化活性,例如前驱体改性、提高结晶度、元素掺杂、与半导体复合、形
貌结构调控等。本文介绍了 g-C3N4 光催化材料的分子结构特征、性能优势以及其制备方法,系统总结了目前
应用广泛的修饰改性策略并加以举例说明,最后,对 g-C3N4 光催化材料面临的科学技术挑战和未来研究方向
作出探讨。
关键词
全文:
PDF参考
[1] GUAN G, YE E, YOU M, et al. Hybridized 2D
Nanomaterials Toward Highly Efficient Photocatalysis
for Degrading Pollutants: Current Status and Future
Perspectives[J]. Small, 2020(16):1907087.
[2] 党云飞 , 卫芝贤 , 岳盼等 . 硝化甘油废水处理的
研究进展 [J]. 精细化工中间体 ,2018,48(06):6-11.
[3] Li F,Gu Q,Niu Y,et al.Hydrogen evolution from
aqueousphase photocatalytic reforming of ethylene glycol
over Pt/Ti O2catalysts: Role of Pt and product
distribution[J].Applied Surface Science,2017,391:251-258.
[4] 吴 桧 , 陈 雪 燕 , 邹 贵 容 , 熊 梦 元 , 王 奕 琛 . 石
墨相氮化碳在光催化降解领域的研究进展 [J]. 辽宁化
工 ,2021,50(09):1318-1320.
[5] 黄 正 喜 , 刘 献 平 , 吴 腊 梅 等 .Bi2
sub>O3/TiO2 纳米粒子的制备及
其光催化性能的研究 [J]. 中南民族大学学报 ( 自然科学
版 ),2016,35(1):17-22.
[6] Wang X, Maeda K, Thomas A, et al. A metal-free
polymeric photocatalyst for hydrogen production from water
under visible light[J].Nature Materials,2009,8(1):76-80.
[7] 代宏哲,高续春,张俊霞,等 . 溶剂热法制备
石墨型氮化碳及其降解苯酚研究 [J]. 化学与生物工程,
2017,34(09):19-23.
[8] Wang X,Blechert S,Antonietti M.Polymeric graphitic
carbon nitride for heterogeneous photocatalysis[J].ACS
Catalysis,2012,2(8):1596-1606.
[9] Chen W, Liu M, Wei S J, et al. Solid-state synthesis
of ultrathin MoS2 as a cocatalyst on mesoporous g-C3N4 for
excellent enhancement of visible light photoactivity. J Alloys
Compd, 2020, 836: 155401.
[10] 黎小芳 , 沈群 , 李覃 , 吕康乐 . 光催化材料石
墨相氮化碳研究进展 [J]. 中南民族大学学报 ( 自然科学
版 ),2021,40(05):441-452.
[11] KROKE E,SCHWARZ M,HORATH-BORDON
E,et al.Tri-s-triazine derivatives.Part I.From trichloro_xfffe_tri-s-triazine to graphitic C3N4
structures[J].New J Chem,2002,26(5):508-512.
[12] YAN S C,LI Z S,ZOU Z G.Photodegradation
performance of g-C3N4
fabricated by directly heating melamine[J].Langmu
ir,2009,25(17):10397-10401.
[ 1 3 ] Z H A N G G , Z H A N G J , Z H A N G M , e t
al.Polycondensation of thiourea into carbon nitride
semiconductors as visible light photocatalysts[J].J Mater
Chem,2012,22(16):8083-8091.
[14] Dong G H, Zhang L Z. Porous structure dependent
photoreactivity of graphitic carbon nitride under visible
light[J].Journal of Materials Chemistry, 2012,22(3):1160-
1166.
[15] CHENG J,HU Z,LI Q,et al.Fabrication of high
photoreactive carbon nitride nanosheets by polymerization
of amidinourea for hydrogen production[J].App Catal
B-Environ,2019,245:197-206.
[16] BOJDYS M J,MULLER J O,ANTONIETTI M,et
al.Ionothermal synthesis of crystalline,condensed,graphitic
carbon nitride[J].Chem,2008,14(27):8177-8182.
[17] DONTSOVA D,PRONKIN S,WEHLE M,et
al.Triazoles:A new class of precursors for the synthesis
of negatively charged carbon nitride derivatives[J].Chem
Mater,2015,27(15):5170-5179.
[18] GAO H,YAN S,WANG J,et al.Towards efficient
solar hydrogen production by intercalated carbon nitride
photocatalyst[J].Phys Chem Chem Phy,2013,15(41):18077-
18084.
[19] QIU C,XU Y,FAN X,et al.Highly crystalline
K-intercalated polymeric carbon nitride for visible-light
photocatalytic alkenes and alkynes deuterations[J].Adv
Sci,2019,6(1):1801403.
[20] GAO L F,WEN T,XU J Y,et al.Iron-doped carbon
nitride-type polymers as homogeneous organocatalysts for
visible light-driven hydrogen evolution[J].ACS Appl Mater
Interfaces,2016,8(1):617-624.
[21] Hu S Z,Li F Y,Fan Z P,et al. Band gap-tunable
potassium doped graphitic carbon nitride with enhanced
mineralization ability [J]. Dalton Transactions :Cambridge,
England,2015,44(3):1084-1092.
[22] WANG K,LI Q,LIU B,et al.Sulfur-doped
g-C3N4 with enhanced
photocatalytic CO2 reduction performance[J].
Appl Catal B-Environ,2015,176:44-52.
[23] XIONG T,WANG H,ZHOU Y,et al.KClmediated dual electronic channels in layered g-C3
sub>N4 for enhanced visible light photocatalytic
NO removal[J].Nanoscale,2018,10(17):8066-8074.
[24] 陈小梅 , 宋连香 , 胡育等 .g-C3N4/TiO2 异质结
光催化性能研究 [J]. 广东化工 ,2018,45(15):64-67.
[25] KARIMI M A, ILIYAT M, ATASHKADI M,
et al. Microwaveassisted synthesis of the Fe2
sub>O3/g-C3N4
nanocomposites with enhanced photocatalytic activity for
degradation of methylene blue[J]. Journal of the Chinese
Chemical Society, 2020(67):2032-2041.
[26] GUO F,SHI W,LI M,et al.2D/2D Z-scheme
heterojunction of CuInS2/g-C3
sub>N4 for enhanced visible-lightdriven photocatalytic activity towards the degradation of
tetracycline[J].Sep Purif Technol,2019,210:608-615.
[27] XU Q,ZHANG L,CHENG B,et al.S-scheme
heterojunction photocatalyst[J].Chem,2020,6(7):1543-1559.
[28] PAN H,ZHANG Y W,SHENOY V B,et al.Ab initio
study on a novel photocatalyst:Functionalized graphitic carbon
nitride nanotube[J].ACS Catal,2011,1(2):99-104.
[29] Xu G, Xu Y H, Zhou Z C, et al. Facile hydrothermal
preparation of graphitic carbon nitride supercell structures
with enhanced photodegradation activity[J]. Diamond and
Related Materials, 2019,97.
[30] Papailias I, Todorova N, Giannakopoulou T,
et al. Novel torus shaped g-C3N4
sub>photocatalysts[J]. Applied Catalysis BEnvironmental,
2020,268.
[31] ZHAO W, ZHOU H, ZHANG G, et al. Templatefree assembly of protonated g-C3N4
sub> nanosheets into microspheres with enhanced
UV-light photocatalytic activity[J]. Materials Letters,
2021(282):128698.
DOI: http://dx.doi.org/10.12361/2661-3743-04-11-113582
Refbacks
- 当前没有refback。