基于深度学习的自动化软件缺陷检测研究
摘要
其系统架构设计、代码语义表示方法、模型结构与训练策略,介绍了检测流程与 CI 环境的集成机制,结合 CodeXGLUE
与 Devign 数据集开展对比实验。研究结果表明,该系统在 F1-score 与检测延时等核心指标上优于现有方法,具备较强的
实用性与工程部署价值。
关键词
全文:
PDF参考
[1]Sharma K L ,Parekh S ,Yadav K A .Observational
constraints using Bayesian statistics and deep learning in f(Q)
gravity[J].Nuclear Physics, Section B,2025,1018117007-117007.
[2]Wang J ,Zheng G .JISS: Joint image super-
resolution and segmentation of magnetic resonance images
via disentangled representation learning[J].Knowledge-Based
Systems,2025,326114057-114057.
[3]Awwal P ,Naval S D .Development of heuristic
adapted serial-based deep learning for efficient adversarial
malware detection framework in windows[J].Knowledge-Based
Systems,2025,326114032-114032.
[4]Singh P H ,Prashar P ,Reddy C B S G , et al.Multimodal
Multi-task deep learning framework for classification of sentiment,
emotion, humor, sarcasm and toxicity from speech[J].Knowledge-
Based Systems,2025,326113995-113995.
[5]Apostol S E ,Pisică G A ,Truică O C .ATESA-
BÆRT: A heterogeneous ensemble learning model for
Aspect-Based Sentiment Analysis[J].Knowledge-Based
Systems,2025,326113987-113987.
[6] 崔宇寅 . 软件自动化测试方法简述与展望 [J]. 电脑知
识与技术 ,2010,6(34):9749-9751+9769.
DOI: http://dx.doi.org/10.12361/2661-3727-07-03-174323
Refbacks
- 当前没有refback。