基于深度学习的钢材表面缺陷检测研究方法综述
摘要
关键词
全文:
PDF参考
[1]Bingjie L,Jingyang G,Xinyu S. Application of Unsupervised DeepLearning in Color Image Recognition[P]. 2020 7th InternationalConference on Machinery, Mechanics, Materials, and ComputerEngineering,2020.[2]Liu H,He B,He Y, et al. Surface defects detection algorithm for asmall sample of sealing rings for aerospace based on deep learning[P]. Target Recognition and Artificial Intelligence Summit Forum,2020.[3]Krizhevsky A, Sutskever I, Hinton G E. Imagenet Classificationwith Deep Convolutional Neural Networks[J]. Advances in NeuralInformation Processing Systems, 2012, 25(2): 84-90.[4]徐镪,朱洪锦,范洪辉等. 改进的 YOLOv3 网络在钢板表面缺陷检测研究[J]. 计算机工程与应用, 2020, 56(16): 265-272.[5]Li J, Su Z, Geng J, et al. Real-time detection of steel strip surfacedefects based on improved yolo detection network[J]. IFAC-PapersOnLine, 2018, 51(21): 76-81.[6]罗晖,李健,贾晨.基于图像增强与改进 Cascade R-CNN 的钢轨表面缺陷检测[J]. 激光与光电子学进展, 2021, 58(22): 324-335.[7]谷长江,高法钦.改进 YOLOv5s 的钢材表面缺陷检测[J].软件工程,2023,26(08):31-34.DOI:10.19644/j.cnki.issn2096-1472.2023.008.007.
DOI: http://dx.doi.org/10.12361/2661-3549-05-09-143681
Refbacks
- 当前没有refback。