首页出版说明中文期刊中文图书环宇英文官网付款页面

MOFs材料的轻烃吸附分离研究进展

王 依军1, 刘 复凯2, 魏 鹏朝3, 洪 林鑫3, 刘 秀萍3
1、临沂大学材料科学与工程学院,菲律宾克里斯汀大学国际学院
2、山东农业工程学院经济管理学院
3、临沂大学材料科学与工程学院

摘要


轻烃的高效吸附分离具有重要的工业和环境意义。MOFs材料具有大的比表面积、超强的可设计性和结构可调性,在吸附分离方面存在诱人的应用前景。本文总结了多种MOFs材料在轻烃吸附分离方面的研究进展和作用机理,探讨MOFs材料在轻烃吸附分离中的发展方向。

关键词



全文:

PDF


参考


[1] Ye, Y.; Du, J. F.; Sun, L. B. et al. Two zinc metal–organic framework isomers based on pyrazine tetracarboxylic acid anddipyridinylbenzene for adsorption and separationof CO2 and light hydrocarbons. Dalton Trans., 2020, 49, 1135–1142. [2] Sun, F. Z; Yang, S. Q; Krishna, R. J. et al. Microporous metal−organic framework with a completelyreversed adsorption relationship for C2 hydrocarbons at roomtemperature.ACS Appl. Mater. Interfaces, 2020, 12, 6105−6111.[3] Qiao, Z.; Xu, Q.; Jiang, J. Computational screening of hydrophobic metal–organic frameworks for the separation of H2S and CO2 from natural gas. J. Mater. Chem. A, 2018, 6, 18898−18905.[4] Ye,Y. X., Lin,R. B., Chen,B. L.,et al. A microporous metal–organic framework with naphthalene diimidegroups for high methane storage.Dalton Trans., 2020, 49, 3658−3661.[5] Franz, D. M.; Dyott, Z. E.; Forrest, K. A. Simulations of hydrogen, carbon dioxide, and small hydrocarbon sorption in a nitrogen-rich rht-metal-organic framework. Phys. Chem. Chem. Phys., 2018, 20, 1761−1777.[6]Zhang, Y. B.; Yang, L. F.; Wang, L. Y. et al. Pillar iodination in functional boron cage hybridsupramolecular frameworks for high performance separation of light hydrocarbons. J. Mater. Chem. A, 2019, 7, 27560–27566.[7]崔希利,邢华斌.金属有机框架材料分离低碳烃的研究进展(D). 杭州:浙江大学,2017.[8] Li, J.; Jiang, L. Y.; Sun, L. B. et al. Metal-organic framework containing planar metal-binding sites:efficiently and cost-effectively enhancing the kinetic separation ofC2H2/C2H4. J. Am. Chem. Soc., 2019, 141, 3807-3811.[9] Wen, H. M.; Liao, C.; Li, L.; et al. A metal–organic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO2 capture. J. Mater. Chem. A, 2019, 7, 3128–3134.[10] Cui, W. G.; Hu, T. L.; Bu, X. H. Metal–organic framework materials for the separation and purification of light hydrocarbons. Adv. Mater., 2019, 1806445–1806468.[11] R. B. Lin, S. Xiang, H. Xing, et al. Exploration of porous metal–organic frameworks for gas separation and purification. Coordin. Chem. Rev., 2019, 378, 87–103.[12] A. Schneemann, E. D. Bloch, S. Henke, et al. Influence of solvent-like side chains on the adsorption of light hydrocarbons in metal–organic frameworks. Chem. Eur. J., 2015, 21, 18764–18769.[13] Y. Yan, M. Juríček, F. Coudert, et al. Non-interpenetrated metal–organic frameworks based on copper (II) paddlewheel and oligoparaxylene-isophthalate linkers: synthesis, structure, and gas adsorption. J. Am. Chem. Soc., 2016, 138, 3371–3381.[14] Charles, C. D.; Bloch, E. D. High-pressure methane storage and selective gas adsorption in a cyclohexane functionalisedporous organic cage. Suparmolecular. Chem., 2019, 31, 508–513.[15] Lin, R. B.; Xiang, S.; Xing, H.; et al. Exploration of porous metal–organic frameworks for gas separation and purification. Coordin. Chem. Rev., 2019, 378, 87–103.[16] Schneemann, A.; Bloch, E. D.; Henke, S. et al. Influence of solvent-like side chains on the adsorption of light hydrocarbons in metal-organic frameworks. Chem. Eur. J., 2015, 21, 18764–18769.[17] Yan, Y.; Juríček, M.; Coudert, F. et al. Non-interpenetrated metal–organic frameworks based on copper(II) paddlewheel and oligoparaxylene-isophthalate linkers: synthesis, structure, and gas adsorption. J. Am. Chem. Soc., 2016, 138, 3371–3381.[18] He, Y.; Zhang Z.; Xiang S. High separation capacity and selectivity of C2 hydrocarbons over methane within a microporous metal-organic framework at room temperature. Chemistry, 2012, 18, 1901−1904.[19] He, Y.; Krishna, R.; Chen, B. Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energ. Environ. Sci., 2012, 5, 9107–9120.[20] Chen, F.; Bai, D.; Wang, Y. A family of ssa-type copper-based MOFs constructed from unsymmetrical diisophthalates: synthesis, characterization and selective gas adsorption. Mater. Chem. Front., 2017, 1, 2283–2291.[21] Bae, Y. S.;Lee, C. Y.; Kim, K. C. High propene/propane selectivity in isostructural metal organic frameworks with high densities of open metal sites. Angew. Chem. Int. Ed., 2012, 51, 1857–1860.[22] Li, L. B.; Lin, R. B.; Krishna, R., et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 2018, 362, 443–446. [23] Cui, X. L.; Chen, K. J.; Xing, H. B., et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353, 141–144.[24] Fan, W.; Wang, X.; Xu, B.; et al. A mino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance. J. Mater. Chem. A, 2018, 6, 24486–24495.[25]V. Martins, A. M. Rebeiro, A. Ferreim, et a1.Ethane/ethylene separationon acopper benzene-1,3,5-tricarboxylate MOF.Sep. Purif. Technol.,2015, 149, 445-456.[26] S. Yang, A. J. Ramirez-cuesta, R. Newby, et al. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nature Chem., 2014, 7, 121–129.[27] B. Zhu, J. Cao, S. Mukherjee, et al. Pore engineering for one-step ethylene purification from a three-component hydrocarbon mixture. J. Am. Chem. Soc.,2021, 143, 1485−1492.[28] X. P. Liu, W. D. Fan, M. H. Zhang, et al. Enhancing light hydrocarbons storage and separation through introducing Lewis basic nitrogen sites within a carboxylate-decorated copper–organic framework. Mater. Chem. Front., 2018, 2, 1146–1154.




DOI: http://dx.doi.org/10.12361/2661-4960-04-15-100154

Refbacks

  • 当前没有refback。