钙钛矿的稳定性研究
摘要
前景的光伏发电技术之一。近年来,越来越多的研究者将精力放在提高钙钛矿太阳能电池的光电转换效率上,并取得了显
著成绩,但相对的却忽略了钙钛矿太阳能电池本身的稳定性这一关键性因素。本文主要研究一步法制备的钙钛矿太阳能电
池的性能,先通过对比不同溶剂比例的钙钛矿前驱溶液制备出的器件,寻找出最佳溶剂比例的钙钛矿前驱溶液。在此基础上,
研究了采用甲基溴化铵(MABr)处理的器件的稳定性。
关键词
全文:
PDF参考
[1] 万婷婷 , 朱安康 , 郭友敏 , 等 . 钙钛矿太阳能电池 :
从高效率到稳定性 [J]. 材料导报 , 2017(5):
16-22.
[2] Li C, Lu X, Ding W, et al. Formability of ABX3 (X = F,
Cl, Br, I) halide perovskites[J]. Acta Crystallographica, 2008,
64(Pt 6):702.
[3] Green M A, Ho-Baillie A, Snaith H J. The emergence of
perovskite solar cells[J]. Nature Photonics, 2014, 8(7):506-514.
[4] Chen J D, Cui C, Li Y Q, et al. Single-junction polymer
solar cells exceeding 10% power conversion efficiency[J].
Advanced Materials, 2015, 27(6):1035.
[5] Snaith H J. Perovskites: The Emergence of a New Era
for Low-Cost, High-Efficiency Solar Cells[J]. Journal of Physical
Chemistry Letters, 2013, 4(21):3623-3630.
[6] Cheng Y B, Han Y, Meyer S, et al. Degradation
observations of encapsulated planar CH3NH3PbI3 perovskite solar
cells at high temperatures and humidity[J]. Journal of Materials
Chemistry A, 2015, 3(15):8139-8147.
[7] Habisreutinger S N, Leijtens T, Eperon G E, et al. Carbon
nanotube/polymer composite as a highly stable charge collection
layer in perovskite solar cells[J]. Analytical Chemistry, 2014.
[8] Zhang M, Lyu M, Yu H, et al. Stable and low-cost
mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin
poly(3-hexylthiophene) layer as a hole transporter[J]. Chemistry,
2015, 1(1):434-9.
[9] Song J, Zheng E, Bian J, et al. Lowerature SnO2-based
electron selective contact for efficient and stable perovskite solar
cells[J]. Journal of Materials Chemistry A, 2015, 3(20):10837-
10844.
[10] Kim J H, Liang P W, Williams S T, et al. High_xfffe_performance and environmentallystable planar heterojunction
perovskite solar cells based on a solution-processed copper_xfffe_doped nickel oxide holetransporting layer[J]. Advanced Materials,
2015, 27(4):695-701.
[11] Niu G, Guo X, Wang L. Review of Recent Progress in
Chemical Stability of Perovskite Solar Cells[J]. Journal of Materials
Chemistry A, 2015, 3(17):8970-8980.
[12] Yang J, Siempelkamp B D, Liu D, et al. Investigation of
CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled
Humidity Environments Using in Situ Techniques[J].Acs Nano,
2015, 9(2):1955.
[13] Supasai T, Rujisamphan N, Ullrich K, et al. Formation
of a passivating CH3NH3PbI3/PbI2 interface during moderate
heating of CH3NH3PbI3 layers[J]. Applied Physics Letters,2013,
103(18):1739.
[14] Yang W S, Noh J H, Jeon N J, et al. High performance
photovoltaic perovskite layers fabricated through intramolecular
exchange[J]. Science, 2015, 348(6240):1234-1237.
[15] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro
A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel
M, Park N G. Lead iodide perovskite sensitized all-aolidstatesubmicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 27(2):521.
[16] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao
P, Nazeeruddin M K, Graetzel M. Sequential deposition as a route
to high-performance perovskite-sensitized solar cells[J]. Nature,
2013, 499,316-319.
[17] Liu M, Johnston M, Snaith H J. Efficient planar
heterojunction perovskite solar cells by vapour deposition[J].
Nature, 2013, 501(7467):395-398.
[18] Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H
H, Liu Y S, Li G, Yang Y. Interface engineering of highly efficient
perovskite solar cells[J]. Science, 2014, 345, 542.
DOI: http://dx.doi.org/10.12361/2661-376X-07-04-170259
Refbacks
- 当前没有refback。