首页出版说明中文期刊中文图书环宇英文官网付款页面

钙钛矿的稳定性研究

吕 倩超

摘要


钙钛矿太阳能电池是一种基于钙钛矿结构的材料制备而成的太阳能电池,它凭借其独有的优势,已成为最具发展
前景的光伏发电技术之一。近年来,越来越多的研究者将精力放在提高钙钛矿太阳能电池的光电转换效率上,并取得了显
著成绩,但相对的却忽略了钙钛矿太阳能电池本身的稳定性这一关键性因素。本文主要研究一步法制备的钙钛矿太阳能电
池的性能,先通过对比不同溶剂比例的钙钛矿前驱溶液制备出的器件,寻找出最佳溶剂比例的钙钛矿前驱溶液。在此基础上,
研究了采用甲基溴化铵(MABr)处理的器件的稳定性。

关键词


钙钛矿太阳能电池;一步法;甲基溴化铵;效率;稳定性

全文:

PDF


参考


[1] 万婷婷 , 朱安康 , 郭友敏 , 等 . 钙钛矿太阳能电池 :

从高效率到稳定性 [J]. 材料导报 , 2017(5):

16-22.

[2] Li C, Lu X, Ding W, et al. Formability of ABX3 (X = F,

Cl, Br, I) halide perovskites[J]. Acta Crystallographica, 2008,

64(Pt 6):702.

[3] Green M A, Ho-Baillie A, Snaith H J. The emergence of

perovskite solar cells[J]. Nature Photonics, 2014, 8(7):506-514.

[4] Chen J D, Cui C, Li Y Q, et al. Single-junction polymer

solar cells exceeding 10% power conversion efficiency[J].

Advanced Materials, 2015, 27(6):1035.

[5] Snaith H J. Perovskites: The Emergence of a New Era

for Low-Cost, High-Efficiency Solar Cells[J]. Journal of Physical

Chemistry Letters, 2013, 4(21):3623-3630.

[6] Cheng Y B, Han Y, Meyer S, et al. Degradation

observations of encapsulated planar CH3NH3PbI3 perovskite solar

cells at high temperatures and humidity[J]. Journal of Materials

Chemistry A, 2015, 3(15):8139-8147.

[7] Habisreutinger S N, Leijtens T, Eperon G E, et al. Carbon

nanotube/polymer composite as a highly stable charge collection

layer in perovskite solar cells[J]. Analytical Chemistry, 2014.

[8] Zhang M, Lyu M, Yu H, et al. Stable and low-cost

mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin

poly(3-hexylthiophene) layer as a hole transporter[J]. Chemistry,

2015, 1(1):434-9.

[9] Song J, Zheng E, Bian J, et al. Lowerature SnO2-based

electron selective contact for efficient and stable perovskite solar

cells[J]. Journal of Materials Chemistry A, 2015, 3(20):10837-

10844.

[10] Kim J H, Liang P W, Williams S T, et al. High_xfffe_performance and environmentallystable planar heterojunction

perovskite solar cells based on a solution-processed copper_xfffe_doped nickel oxide holetransporting layer[J]. Advanced Materials,

2015, 27(4):695-701.

[11] Niu G, Guo X, Wang L. Review of Recent Progress in

Chemical Stability of Perovskite Solar Cells[J]. Journal of Materials

Chemistry A, 2015, 3(17):8970-8980.

[12] Yang J, Siempelkamp B D, Liu D, et al. Investigation of

CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled

Humidity Environments Using in Situ Techniques[J].Acs Nano,

2015, 9(2):1955.

[13] Supasai T, Rujisamphan N, Ullrich K, et al. Formation

of a passivating CH3NH3PbI3/PbI2 interface during moderate

heating of CH3NH3PbI3 layers[J]. Applied Physics Letters,2013,

103(18):1739.

[14] Yang W S, Noh J H, Jeon N J, et al. High performance

photovoltaic perovskite layers fabricated through intramolecular

exchange[J]. Science, 2015, 348(6240):1234-1237.

[15] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro

A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel

M, Park N G. Lead iodide perovskite sensitized all-aolidstatesubmicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 27(2):521.

[16] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao

P, Nazeeruddin M K, Graetzel M. Sequential deposition as a route

to high-performance perovskite-sensitized solar cells[J]. Nature,

2013, 499,316-319.

[17] Liu M, Johnston M, Snaith H J. Efficient planar

heterojunction perovskite solar cells by vapour deposition[J].

Nature, 2013, 501(7467):395-398.

[18] Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H

H, Liu Y S, Li G, Yang Y. Interface engineering of highly efficient

perovskite solar cells[J]. Science, 2014, 345, 542.




DOI: http://dx.doi.org/10.12361/2661-376X-07-04-170259

Refbacks

  • 当前没有refback。