首页出版说明中文期刊中文图书环宇英文官网付款页面

埃塞俄比亚吉马亏缺灌溉下哈拉格咖啡基因型幼苗生物量的量产和分配

Minda Tadesse
吉马农业研究中心灌溉和水收获研究部

摘要


在埃塞俄比亚,干旱严重制约着咖啡产量。为了克服这一问题,了解不同水分胁迫下咖啡基因型在不同部位
生物量积累模式的变化规律,对选择耐旱基因型具有重要意义。因此,本研究的目的是评价和表征在吉马农业研究
中心雨棚亏缺灌溉对哈拉格咖啡基因型生物量分配模式的影响。试验采用完全随机区组设计,有 3 个重复,处理包
括 3 种缺陷水平 (40、80 和 120% 的 ETc) 和 6 种基因型 (H-674/98、H-739/98、H-823/98、H-981/98、H-929/98 和
H-857/98)。结果表明,由于灌溉不足和基因型及其相互作用,咖啡干生物量分配模式发生了显著变化。总的来说,
在 40% ETc 条件下,根系的生物量同化和分配较高 (37%),而在水分充足的情况下,根系的投资以牺牲茎部为代价,
使植物从底层土壤中提取更多的水分,如果上层土壤水分有限,相反,在水分充足的情况下,叶片的干物质分配较
大 (48%),最终在水分胁迫条件下下降到 26%。在灌溉良好的环境下,叶片中积累的干物质越多,植株的光合能力就
越强,从而促进植株生长。研究咖啡植株不同部位的干生物量分配规律,对确定适宜的浇水量和确定变异气候条件
下的耐旱基因型具有重要意义。

关键词


亏缺灌溉;生物量生产;生物量分配;咖啡幼苗;哈拉格咖啡基因型

全文:

PDF


参考


[1] ICO. 2010. International Coffee Organization.

Annual Review. http://www.ico.org/

[2] Tesfaye, S. G, Ismail, M. R., and Mahmood, M.,

2008. Effects of deficit irrigation and partial rootzone drying

on growth, dry matter partitioning and water use efficiency

in young coffee (Coffeaarabica L.) plants. Journal of Food,

Agriculture & Environment Vol. 6 (3 & 4): 312-317. 2008.

[3] Araujo WL, Dias PC, Moraes GA, Celin EF,

Cunha RL, Barros RS, DaMatta FM (2008) Limitations

to photosynthesis in coffee leaves from different canopy

positions. Plant Physiol Biochem 46: 884-89.

[4] DaMatta FM, Ronchi CP, Maestri M, Barros RS

(2007) Ecophysiology of coffee growth and production.

Braz J Plant Physiol 19: 485-510.

[5] Bruno, I. P., Reichardt, K., Bortolotto, R. P., Pinto,

V. M., Bacchi, O. O. S., Dourado-Neto, D. and Unkovich,

M. J., 2015. Nitrogen balance and fertigation use efficiency

in a field coffee crop. Journal of Plant Nutrition, 38 (13), pp.

2055-2076.

[6] Harmand J-M, Ávila H, Dambrine E, Skiba U, de

Miguel S, Renderos RV, Oliver R, Jiménez F, Beer J (2007)

Nitrogen dynamics and soil nitrate retention in a Coffea

arabica— Eucalyptus deglupta agroforestry system in

Southern Costa Rica. Biogeochem 85: 125-139.

[7] Jaramillo-Botero C, Santos RHS, Martinez HEP,

Cecon PR, Fardin MP (2010) Production and vegetative

growth of coffee trees under fertilization and shade levels.

Scientia Agricola 67: 639-645.

[8] Fahl J, Carelli M, Vega J, Magalhães A (1994)

Nitrogen and irradiance levels affecting net photosynthesis

and growth of young coffee plants (Coffea arabica L.). J

Hort Sci 69: 161-170.

[9] Siles P, Harmand J-M, Vaast P (2010) Effects of

Inga densiflora on the microclimate of coffee (Coffea arabica

L.) and overall biomass under optimal growing conditions in

Costa Rica. Agroforestry Systems 78: 269-286.

[10] Perfecto, I., Rice, R. A., Greenberg, R. and Van der

Voort, M. E., 1996. Shade coffee: a disappearing refuge for

biodiversity: shade coffee plantations can contain as much

biodiversity as forest habitats. BioScience, 46 (8), pp. 598-

608.

[11] DaMatta, F. M. and Ramalho, J. D. C., 2006.

Impacts of drought and temperature stress on coffee

physiology and production: a review. Brazilian journal of

plant physiology, 18 (1), pp. 55-81.

[12] DaMatta, F. M., 2004. Exploring drought tolerance

in coffee: a physiological approach with some insights for

plant breeding. Brazilian journal of plant physiology, 16 (1),

pp. 1-6.

[13] Brouwer R (1962) Nutritive influences on the

distribution of dry matter in the plant. Neth J Agric Sci 10:

399–408.

[14] Lambers H (1983) The functional equilibrium,

nibbling on the edges of a paradigm. Neth J Agric Sci 31:

305-311.

[15] Poorter H, Remkes C (1990) Leaf area ratio and

net assimilation rate of 24 wild species differing in relative

growth rate. Oecologia 83: 553-55.

[16] CHB. 1987. Coffee Hand Book (CHB). Coffee

Growers Association, Harare, Zimbabwe, Canon Press (Pvt)

Ltd.

[17] Setter, T. L. 1992. Assimilate allocation in response

to water deficit stress. International Crop Science. pp. 733-

735. Crop Science of America, Inc., Madson, Wisconsin,

USA.

[18] Chaves, R. M., Ten-Caten, A., Pinheiro, H. A.,

Ribeiro, A. and Damatta, F. M. (2008) Seasonal changes in

photopro- tective mechanisms of leaves from shaded and

unshaded field-grown coffee (Coffea arabica L.) trees. Trees,

22, 351-361. Doi: 10.1007/s00468-007-0190-7.

[19] Tesfaye, S. G., 2008. Effects of deficit irrigation

and partial rootzone drying on growth, dry matter

partitioning and water use efficiency in young coffee (Coffea

arabica L.) plants.

[20] Taye, K. 2012. Biomass production and

distribution in seedlings of Coffea arabica genotypes under

contrasting nursery environments in southwestern Ethiopia.

Agricultural Sciences, 3 (06), p. 835.

[21] James S. McDonald, Tom Ericsson and CarlMagnus Larsson. 1996 Plant nutrition, dry matter gain and

partitioning at the whole-plant level. Journal of Experimental

Botany. 47: 1245-1253.

[22] Ericsson T. 1995. Growth and shootroot ratio of

seedlings in relation to nutrient availability. Plant and Soil

168/169: 205-14.

[23] Mendiburu, F. and deMendiburu, M. F., 2019.

Package‘agricolae’. R Package, Version, pp. 1-2.

[24] Team, R. C., 2013. R: A language and environment

for statistical computing.

[25] Lahai, M. and Ekanayake, I., 2009. Accumulation

and distribution of dry matter in relation to root yield of

cassava under a fluctuating water table in inland valley

ecology. African Journal of Biotechnology Vol. 8 (19), pp.

4895-4905.




DOI: http://dx.doi.org/10.12361/2661-3786-04-06-115863

Refbacks

  • 当前没有refback。