微生物协助植株应对非生物胁迫策略
摘要
抗逆性和存活率。本文关注根际生态和根际微生物调控植物非生物胁迫相关基因等方面的研究进展,论述了植物与微生物群落之间组合
模式,微生物群落中的哪一类菌能够协助植株应对非生物胁迫以及植物以何种媒介募集特异种属的微生物三个方面科学问题,旨在为微
生物肥料和农业可持续发展提供新思路。
关键词
全文:
PDF参考
[1]王雷,郭岩,杨淑华. 非生物胁迫与环境适应性育种的现状及
对策[J]. 中国科学:生命科学,2021,51(10):1424-1434. [2]Ambavaram, Madana M R et al. “Coordinated regulation of p
hotosynthesis in rice increases yield and tolerance to enviro
nmental stress.” Nature communications vol. 5 5302. 31
Oct. 2014, doi:10.1038/ncomms6302
[3]Yang, An et al. “A R2R3-type MYB gene, OsMYB2, is invol ved in salt, cold, and dehydration tolerance in rice.” Journ
al of experimental botany vol. 63,7 (2012): 2541-56. doi:10. 1093/jxb/err431
[4]Song, Cheng et al. “The Multifaceted Roles of MYC2 in Plan
ts: Toward Transcriptional Reprogramming and Stress Tole
rance by Jasmonate Signaling.” Frontiers in plant scienc
e vol. 13 868874. 25 Apr. 2022, doi:10.3389/fpls.2022.868
874
[5]Ku, Yee-Shan et al. “Plant Hormone Signaling Crosstalks bet ween Biotic and Abiotic Stress Responses.” International
journal of molecular sciences vol. 19,10 3206. 17 Oct. 201
8, doi:10.3390/ijms19103206
[6]Nakashima, Kazuo, and Kazuko Yamaguchi-Shinozaki. “AB
A signaling in stress-response and seed development.” Pl ant cell reports vol. 32,7 (2013): 959-70. doi:10.1007/s002
99-013-1418-1
[7]Nadarajah, Kalaivani et al. “SA-Mediated Regulation and Co
ntrol of Abiotic Stress Tolerance in Rice.” International jo
urnal of molecular sciences vol. 22,11 5591. 25 May. 2021, doi:10.3390/ijms22115591
[8]Yuan, Minhang et al. “Pattern-recognition receptors are requi red for NLR-mediated plant immunity.” Nature vol. 592,7
852 (2021): 105-109. doi:10.1038/s41586-021-03316-6
[9]Li, Lei et al. “The FLS2-associated kinase BIK1 directly pho
sphorylates the NADPH oxidase RbohD to control plant im
munity.” Cell host & microbe vol. 15,3 (2014): 329-38. d
oi:10.1016/j.chom.2014.02.009
[10]Sun, Yadong et al. “Structural basis for flg22-induced activa
tion of the Arabidopsis FLS2-BAK1 immune complex.” S
cience (New York, N.Y.) vol. 342,6158 (2013): 624-8. doi: 10.1126/science.1243825
[11]Zhou, Yongbin et al. “Overexpression of soybean DREB1 e nhances drought stress tolerance of transgenic wheat in the
field.” Journal of experimental botany vol. 71,6 (2020): 1
842-1857. doi:10.1093/jxb/erz569v
[12]Gong, Zhizhong et al. “Plant abiotic stress response and nut rient use efficiency.” Science China. Life sciences vol. 63, 5 (2020): 635-674. doi:10.1007/s11427-020-1683-x
[13]Shi, H. (n.d.). Integration Of Ca2+ In Plant Drought And Salt
Stress Signal Transduction Pathways. Advances in Molecu
lar Breeding Toward Drought and Salt Tolerant Crops, 141 –182. doi:10.1007/978-1-4020-5578-2_7
[14]Chapman, Jordan M et al. “RBOH-Dependent ROS Synthes
is and ROS Scavenging by Plant Specialized Metabolites T
o Modulate Plant Development and Stress Responses.” C
hemical research in toxicology vol. 32,3 (2019): 370-396. d
oi:10.1021/acs.chemrestox.9b00028
[15]Nadarajah, Kalaivani K. “ROS Homeostasis in Abiotic Stre
ss Tolerance in Plants.” International journal of molecular sciences vol. 21,15 5208. 23 Jul. 2020, doi:10.3390/ijms21
155208
[16]Trivedi, Pankaj et al. “Plant-microbiome interactions: from
community assembly to plant health.” Nature reviews. Mi crobiology vol. 18,11 (2020): 607-621. doi:10.1038/s41579
-020-0412-1
[17]Tyc,, O., Song, C., Dickschat, J. S., Vos, M., & Garbeva, P. (2017). The Ecological Role of Volatile and Soluble Secon
dary Metabolites Produced by Soil Bacteria. Trends in Mic
robiology, 25(4), 280–292. doi:10.1016/j.tim.2016.12.002
[18]Zarebanadkouki, M., Fink, T., Benard, P., & Banfield, C. C. (2019). Mucilage Facilitates Nutrient Diffusion in the Dryi ng Rhizosphere. Vadose Zone Journal, 18(1), 0. doi:10.213
6/vzj2019.02.0021
[19]Ahmed, M. A., Zarebanadkouki, M., Ahmadi, K., Kroener, E., Kostka, S., Kaestner, A., & Carminati, A. (2018). Engineer
ing Rhizosphere Hydraulics: Pathways to Improve Plant A
daptation to Drought. Vadose Zone Journal, 17(1), 0. doi:1
0.2136/vzj2016.09.0090
[20]Veach, Allison M et al. “Rhizosphere microbiomes diverge
among Populus trichocarpa plant-host genotypes and chem
otypes, but it depends on soil origin.” Microbiome vol. 7, 1 76. 18 May. 2019, doi:10.1186/s40168-019-0668-8
[21]Hou, Shiji et al. “A microbiota-root-shoot circuit favours Ar abidopsis growth over defence under suboptimal light.” N
ature plants vol. 7,8 (2021): 1078-1092. doi:10.1038/s4147
7-021-00956-4
[22]Banerjee, Samiran et al. “Keystone taxa as drivers of micro
biome structure and functioning.” Nature reviews. Microb
iology vol. 16,9 (2018): 567-576. doi:10.1038/s41579-018- 0024-1
[23]Trivedi, Pankaj et al. “Plant-microbiome interactions: from
community assembly to plant health.” Nature reviews. Mi crobiology vol. 18,11 (2020): 607-621. doi:10.1038/s41579
-020-0412-1
[24]Xu, Xue-Dong et al. “干旱下接种根际促生细菌对苹果实
生苗光合和生理生态特性的影响” [Effects of PGPR ino
culation on photosynthesis and physiological-ecological ch
aracteristics of apple seedlings under drought stress]. Ying
yong sheng tai xue bao = The journal of applied ecology vo
l. 30,10 (2019): 3501-3508. doi:10.13287/j.1001-9332.201
910.024
[25]Danish, Subhan, and Muhammad Zafar-Ul-Hye. “Co-applic
ation of ACC-deaminase producing PGPR and timber-wast e biochar improves pigments formation, growth and yield o
f wheat under drought stress.” Scientific reports vol. 9,1 5
999. 12 Apr. 2019, doi:10.1038/s41598-019-42374-9
[26]Fukami J, Ollero FJ, Megías M, Hungria M. Phytohormones and induction of plant-stress tolerance and defense genes b
y seed and foliar inoculation with Azospirillum brasilense c
ells and metabolites promote maize growth. AMB Express. 2017 Dec;7(1):153. doi: 10.1186/s13568-017-0453-7. Epub
2017 Jul 17. PMID: 28724262; PMCID: PMC5514007. [27]Fu, Wei et al. “Community response of arbuscular mycorrhi zal fungi to extreme drought in a cold-temperate grasslan
d.” The New phytologist vol. 234,6 (2022): 2003-2017. d
oi:10.1111/nph.17692
[28]Li, Tao et al. “Aquaporin genes GintAQPF1 and GintAQPF
2 from Glomus intraradices contribute to plant drought tole
rance.” Plant signaling & behavior vol. 8,5 (2013): e2403
0. doi:10.4161/psb.24030
[29]Xu, Ling et al. “Drought delays development of the sorghu m root microbiome and enriches for monoderm bacteri a.” Proceedings of the National Academy of Sciences of t
he United States of America vol. 115,18 (2018): E4284-E4
293. doi:10.1073/pnas.1717308115
[30]Zhang, Lin et al. “Arbuscular mycorrhizal fungi conducting
the hyphosphere bacterial orchestra.” Trends in plant scie nce vol. 27,4 (2022): 402-411. doi:10.1016/j.tplants.2021.1
0.008
[31]Tatry, Marie-Violaine et al. “Two differentially regulated p
hosphate transporters from the symbiotic fungus Hebeloma
cylindrosporum and phosphorus acquisition by ectomycorr hizal Pinus pinaster.” The Plant journal : for cell and mole
cular biology vol. 57,6 (2009): 1092-102. doi:10.1111/j.13
65-313X.2008.03749.x
[32]Wang, Zhenghong and Yi Song. “Toward understanding the genetic bases underlying plant‐mediated “cry for hel
p” to the microbiota.” iMeta (2022): n. pag. [33]Rolfe, S. A., Griffiths, J., & Ton, J. (2019). Crying out for hel
p with root exudates: adaptive mechanisms by which stress ed plants assemble health-promoting soil microbiomes. Cur
rent Opinion in Microbiology, 49, 73–82. doi:10.1016/j.m
ib.2019.10.003
[34]Bai, Bo et al. “The root microbiome: Community assembly
and its contributions to plant fitness.” Journal of integrati ve plant biology vol. 64,2 (2022): 230-243. doi:10.1111/jip
b.13226
[35]Pang, Zhiqiang et al. “Microbial Diversity of Upland Rice R
oots and Their Influence on Rice Growth and Drought Tole
rance.” Microorganisms vol. 8,9 1329. 31 Aug. 2020, doi: 10.3390/microorganisms8091329
[36]Santos-Medellín, Christian et al. “Prolonged drought impart s lasting compositional changes to the rice root microbiom
e.” Nature plants vol. 7,8 (2021): 1065-1077. doi:10.1038/ s41477-021-00967-1
[37]Song, Chunxu et al. “Designing a home for beneficial plant microbiomes.” Current opinion in plant biology vol. 62 (2
021): 102025. doi:10.1016/j.pbi.2021.102025
[38]Sunil, Bobba et al. “Photorespiration is complemented by cy
clic electron flow and the alternative oxidase pathway to op
timize photosynthesis and protect against abiotic stres
s.” Photosynthesis research vol. 139,1-3 (2019): 67-79. do
i:10.1007/s11120-018-0577-x
[39]Brunn, Melanie et al. “Carbon allocation to root exudates is maintained in mature temperate tree species under drough
t.” The New phytologist vol. 235,3 (2022): 965-977. doi:1
0.1111/nph.18157
[40]Xu, Ling, and Devin Coleman-Derr. “Causes and consequen
ces of a conserved bacterial root microbiome response to dr ought stress.” Current opinion in microbiology vol. 49 (20
19): 1-6. doi:10.1016/j.mib.2019.07.003
[41]包静. 盐胁迫对黄瓜根系分泌物及土壤微生物的影响[D]. 东北农业大学,2009. [42]Xu, Ling, and Devin Coleman-Derr. “Causes and consequen
ces of a conserved bacterial root microbiome response to dr ought stress.” Current opinion in microbiology vol. 49 (20
19): 1-6. doi:10.1016/j.mib.2019.07.003
[43]Wang, Ning et al. “化肥减量配施有机肥对棉田土壤微生
物生物量、酶活性和棉花产量的影响” [Effects of redu
ced chemical fertilizer with organic fertilizer application on
soil microbial biomass, enzyme activity and cotton yiel
d]. Ying yong sheng tai xue bao = The journal of applied ec
ology vol. 31,1 (2020): 173-181. doi:10.13287/j.1001-9332. 202001.022
[44]赵玲玉,索升州,赵祺,姚丹,李慧萍,Christopher Rensing,张金
林.梭梭根际促生菌(PGPR)菌肥对番茄产量、品质和土
壤特性的影响[J/OL].甘肃农业大学学报:1-14[2022-08-2
6].http://kns.cnki.net/kcms/detail/62.1055.S.20220602.182
0.011.html
[45]仝倩倩,祝英,崔得领,赵毅,陈玉坤,王治业,熊友才.我国微生
物肥料发展现状及在蔬菜生产中的应用[J].中国土壤与
肥料,2022(04):259-266.)
[46]Zaramela, Livia S et al. “The sum is greater than the parts: e xploiting microbial communities to achieve complex functi ons.” Current opinion in biotechnology vol. 67 (2021): 14
9-157. doi:10.1016/j.copbio.2021.01.013
DOI: http://dx.doi.org/10.12361/2661-3786-05-01-124993
Refbacks
- 当前没有refback。