植物生长促进根际细菌在农业可持续性中的作用-综述
摘要
减少,且人民对农作物生产的需求不断增长,这是当今的一大挑战。PGPR的使用已被证明是一种通过直接或间接
机制促进植物生长来提高农作物产量的环保方式。PGPR的机制包括调节激素和营养平衡、诱导对植物病原体的抵
抗力以及溶解营养物质以便植物吸收。此外,PGPR与根际内外的大块土壤中的微生物具有协同和拮抗的相互作用,
从而间接提高了植物的生长速度。有许多细菌种类可作为 PGPR,在文献中描述为成功地促进植物生长元素之一。。
然而,PGPR对植物生长的作用方式(机制)与 PGPR作为生物肥料的作用之间存在差距。因此,本综述弥补了上述
空白并总结了 PGPR作为生物肥料促进农业可持续发展的机制。
关键词
全文:
PDF参考
[1]Armada, E.; Portela, G.; Roldan, A.; Azcon, R.
Combined use of beneficial soil microorganism and agrowaste
residue to cope with plant water limitation under semiarid
conditions. Geoderma 2014, 232, 640–648
[2]Calvo, P.; Nelson, L.M.; Kloepper, J.W. Agricultural
uses of plant biostimulants. Plant Soil 2014, 383, 3–41
[3]Nakkeeran, S.; Fernando, W.G.D.; Siddiqui, Z.A. Plant
growth promoting rhizobacteria formulations and its scope in
commercialization for the management of pests and dideases.
In PGPR: Biocontrol and Biofertilization; Siddiqui, Z.A., Ed.;
Springer: Dordrecht, The Netherlands, 2005; pp. 257–296
[4]Hiltner L. 1904. U¨ ber neuere Erfahrungen
und Probleme auf dem Gebiete der Bodenbakteriologie
unterbessonderer Ber ¨ ucksichtigung der Gr¨undung und
Brache. Arb. Dtsch. Landwirtsch. Ges. Berl. 98:59–78
[5]De Weert S, Kuiper I, Kamilova F, Mulders IHM,
Bloemberg GV, et al. 2007. The role of competitive root tip
colonization in the biological control of tomato foot and root
rot. In Biological Control of Plant Diseases, ed. SB Chincolkar,
KGMukerji, pp. 103–22. New York/London/Oxford: Haworth
[6]Lugtenberg BJJ, Dekkers LC, Bloemberg GV. 2001.
Molecular determinants of rhizosphere colonization by
Pseudomonas. Annu. Rev. Phytopathol. 39:461–90
[7]Siddiqui A, Haas D, Heeb S. 2005. Extracellular
protease of Pseudomonas fluorescens CHA0, a biocontrol factor
with activity against the root knot nematode Meloydogyne
incognita. Appl. Environ. Microbiol. 71:5646–49
[8]Marschner H. 1995. Mineral Nutrition of Higher
Plants. London: Academic. 2nd ed
[9]Lugtenberg BJJ, Kravchenko LV, Simons M. 1999.
Tomato seed and root exudate sugars: composition, utilization
by Pseudomonas biocontrol strains and role in rhizosphere
colonization. Environ. Microbiol. 1:439–46
[10]Kamilova F, Validov S, Azarova T, Mulders I,
Lugtenberg B. 2005. Enrichment for enhanced competitive
plant root tip colonizers selects for a new class of biocontrol
bacteria. Environ. Microbiol. 7:1809–17
[11]Validov S. 2007. Biocontrol of tomato foot and root
rot by Pseudomonas bacteria in stonewool. PhD thesis. Leiden
Univ. http://hdl.handle.net/1887/12480
[12]Weller DM. 1988. Biological control of soil borne
plant pathogens in the rhizosphere with bacteria. Annu.Rev.
Phytopathol. 26:379–407
[13]Kamilova F, Kravchenko LV, Shaposhnikov AI,
Azarova T, Makarova N, Lugtenberg BJJ. 2006. Organic acids,
sugars, and L-tryptophane in exudates of vegetables growing
on stonewool and their effects on activities of rhizosphere
bacteria. Mol. Plant Microbe Interact. 19:250–56
[14]Kamilova F, Kravchenko LV, Shaposhnikov AI,
Makarova N, Lugtenberg BJJ. 2006. Effects of the tomato
pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of
the biocontrol bacterium Pseudomonas fluorescens WCS365
on the composition of organic acids and sugars in tomato root
exudate. Mol. Plant Microbe Interact.19:1121–26
[15]Lugtenberg BJJ, Kravchenko LV, Simons M. 1999.
Tomato seed and root exudate sugars: composition, utilization
by Pseudomonas biocontrol strains and role in rhizosphere
colonization. Environ. Microbiol. 1:439–46
[16]Phillips DA, Fox TC, King MD, Bhuvaneswari TV,
Teuber LR. 2004. Microbial products trigger amino acid
exudation from plant roots. Plant Physiol. 136:2887–94
[17]Ahmad, F.; Ahmad, I.; Khan, M.S. Screening of free_xfffe_living rhizospheric bacteria for their multiple plant growth
promoting activities. Microbiol. Res. 2008, 163, 173–181
[18]Burdman, S.; Jurkevitch, E.; Okon, Y. Recent
advances in the use of plant growth promoting rhizobacteria
(PGPR) in agriculture. In Microbial Interactions in Agriculture
and Forestry; Subba Rao, N.S., Dommergues, Y.R., Eds.;
Science Publishers: Enfield, NH, USA, 2000; pp. 229–250.
[19]Weller, D.M.; Thomashow, L.S. Current challenges
in introducing beneficial microorganisms into the rhizosphere.
In Molecular Ecology of Rhizosphere Microorganisms:
Biotechnology and Release of GMOs; O’Gara, F.,Dowling,
D.N., Boesten, B., Eds.; VCH: New York, NY, USA, 1994; pp.
1–18.
[20]Kaymak, D.C. Potential of PGPR in agricultural
innovations. In Plant Growth and Health Promoting Bacteria;
[21]Maheshwari, D.K., Ed.; Springer-Verlag: Berlin/
Heidelberg, Germany, 2010.Saharan, B.S.; Nehra, V. Plant
growth promoting rhizobacteria: A critical review. Life Sci.
Med. Res. 2011, 21,1–30.
[22]hattacharyya, P.N.; Jha, D.K. Plant growth-promoting
rhizobacteria (PGPR): Emergence in agriculture. Wood J.
Microb. Biotechnol. 2012, 28, 1327–1350.
[23]Kloepper, J.W.; Schroth, M.N. Plant growthpromoting rhizobacteria on radishes. In Station de Pathologie,
Proceedings of the 4th International Conference on Plant
Pathogenic Bacteria, Tours, France, 27 August–2 September
1978; Végétale et Phyto-Bactériologie, Ed.; pp. 879–882.
[24]Kloepper, J.W.; Leong, J.; Teintze, M.; Schroth, M.N.
Enhanced plant growth by siderophores produced by plant
growth promoting rhizobacteria. Nature 1980, 286, 885–886
[25]Son, J.S.; Sumayo, M.; Hwang, Y.J.; Kim, B.S.; Ghim,
S.Y. Screening of plant growth promoting rhizobacteria as
elicitor of systemic resistance against grey leaf spot dieses in
pepper. Appl. Soil Ecol. 2014, 73, 1–8
[26]Gray, E.J.; Smith, D.L. Intracellular and extracellular
PGPR: Commonalities and distinctions in the plant-bacterium
signaling processes. Soil Biol. Biochem. 2005, 37, 395–412
[27]Egamberdieva, D.; Lugtenberg, B. Use of Plant
Growth-Promoting Rhizobacteria to Alleviate Salinity Stress in
Plants. In Use of Microbes for the Alleviation of Soil Stresses;
Springer: New York, NY, USA, 2014; Volume 1, pp. 73–96
[28]Okon Y, Bloemberg GV, Lugtenberg BJJ. 1998.
Biotechnology of biofertilization and phytostimulation In
Agricultural Biotechnology, ed. A Altman, pp. 327–49. New
York: Marcel Dekker
[29]Kloepper JW, Gutierrez-Estrada A, Mclnroy JA
(2007) Photoperiod regulates elicitation of growth promotion
but not induced resistance by plant growth-promoting
rhizobacteria. Can J Microbiol 53(2):159–167
[30]Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang
Y, Song W (2005) Characterization of a novel plant growthpromoting bacteria strain Delftia tsuruhatensis HR4 both as
a diazotroph and a potential biocontrol agent against various
plant pathogens. Syst Appl Microbiol 28(1):66–76
[31]Ahmad F, Ahmad I, Khan MS (2005) Indole acetic
acid production by the indigenous isolates of Azotobacter
and fluorescent Pseudomonas in the presence and absence of
tryptophan. Turk J Biol 29:29–34
[32]Boiero L, Perrig D, Masciarelli O, Penna C, Cassan
F, Luna V (2007) Phytohormone production by three strains
of Bradyrhizobium japonicum and possible physiological
and technological implications. Appl Microbiol Biotechnol
74:874–880. doi:10.1007/s00253-006-0731-9
[33]Ribaudo C,Krumpholz E, Cassan F,BottiniR,Cantore
M,CuraA(2006) Azospirillum sp. promotes root hair
development in tomato plants through a mechanism that
involves ethylene. J Plant Growth Regul 24:175–185.
doi:10.1007/s00344-005-0128-5
[34]Werner T, Motyka V, Laucou V, Smets R, Onckelen
HV, Schmulling T (2003) Cytokinin-deficient transgenic
Arabidopsis plants show multiple developmental alterations
indicating opposite functions of cytokinins in the regulation of
shoot and root meristem activity. Plant Cell 15:2532–2550
[35]Zaied KA, El-Diasty ZM, El-Rhman MMA, ElSanossy ASO (2009) Effect of horizontal DNA transfer
between Azotobacter strains on protein patterns of Azotobacter
transconjugants and biochemical traits in bioinoculated
Okra (Abelmoschus Esculentus, L.). Aust J Basic Appl Sci
3(2):748–760
[36]McCully ME (2001) Niches for bacterial endophytes
in crop plants: a plant biologist’s view. Aust J Plant Physiol
28:983–990
[37]Dong Z, McCully ME, Canny MJ (1997) Does
Acetobacter diazotrophicus live and move in the xylem of
sugarcane stems? Anatomical and physiological data. Ann Bot
80:147–158
[38]James EK, Olivares FL, de Oliveira ALM, dos Reis
FB, da Silva LG, Reis VM (2001) Further observations on
the interaction between sugar cane and Gluconacetobacter
diazotrophicus under laboratory and greenhouse conditions. J
Exp Bot 52:747–760
[39]Vessey JK (2003) Plant growth promoting
rhizobacteria as biofertilizers. Plant Soil 255:571–586
[40]Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1999)
Soil microbial community structure: Effects of substrate loading
rates. Soil Biol Biochem 31:145–153. doi:10.1016/S0038-
0717(98)00117-5
DOI: http://dx.doi.org/10.12361/2661-3786-04-02-86920
Refbacks
- 当前没有refback。