水稻抗旱性从常规育种到分子育种的研究进展
摘要
状,具有复杂的表型,影响植物的不同发育阶段。水稻对多种干旱条件的敏感性或耐受性是由不同的干旱响应基因
与其他刺激信号转导途径的胁迫组件的作用协调的。跨学科研究人员利用基因工程或标记辅助选择等多种方法打破
了植物耐受性的复杂机制,开发出具有更高抗旱性的新品种。本综述的主要目的是突出通过常规育种和使用生物技
术工具开发耐旱水稻品种的当前方法,并全面审查有关抗旱基因、QTL分析、基因转化和标记的可用信息-辅助选
择。审查中讨论了干旱胁迫的响应、指标、原因和适应过程。总体而言,这篇综述系统地介绍了从传统到最新的耐
旱水稻品种分子开发的育种方法。这些信息可以作为研究人员和水稻育种者的指导。
关键词
全文:
PDF参考
[1]Sahebi, M.; Hanafi, M.M.; Rafii, M.Y.; Mahmud,
T.M.M.; Azizi, P.; Osman, M.; Miah, G. Improvement of
drought tolerance in rice (Oryza sativa L.): Genetics, genomic
tools, and the WRKY gene family. BioMed Res. Int. 2018,
2018, 3158474.
[2]Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.;
Hasan, M.M.; Oladosu, Y.A.; Olalekan, K.K. Bacterial leaf
blight resistance in rice: A review of conventional breeding to
molecular approach. Mol. Biol. Rep. 2019, 46, 1–14.
[3]Hu, H.; Xiong, L. Genetic engineering and breeding
of drought-resistant crops. Annu. Rev. Plant Biol. 2014, 65,
6
农业科技管理: 2022年4卷2期
ISSN: 2661-3778(Print); 2661-3786(Online)
715–741.
[4]Ozga, J.A.; Kaur, H.; Savada, R.P.; Reinecke, D.M.
Hormonal regulation of reproductive growth under normal and
heat-stress conditions in legume and other model crop species.
J. Exp. Bot. 2016, 68, 1885–1894.
[5]Anjum, S.A.; Ashraf, U.; Zohaib, A.; Tanveer, M.;
Naeem, M.; Ali, I.; Nazir, U. Growth and development
responses of crop plants under drought stress: A review.
Zemdirbyste 2017, 104, 267–276.
[6]Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq,
A.; Zohaib, A.; Ihsan, M.Z. Crop production under drought and
heat stress: Plant responses and management options. Front.
Plant Sci. 2017, 8, 1147.
[7]Yue B, Xue W, Xiong L, Yu X, Luo L, et al. 2006.
Genetic basis of drought resistance at reproductive stage in
rice: separation of drought tolerance from drought avoidance.
Genetics 172:1213–28
[8]Ishimaru K, Shirota K, Higa M, Kawamitsu Y. 2001.
Identification of quantitative trait loci for adaxial and abaxial
stomatal frequencies in Oryza sativa. Plant Physiol. Biochem.
39:173–77
[9]Laza MR, Kondo M, Ideta O, Barlaan E, Imbe T. 2010.
Quantitative trait loci for stomatal density and size in lowland
rice. Euphytica 172:149–58
[10]Lilley JM, Ludlow MM, McCouch SR, O’Toole JC.
1996. Locating QTL for osmotic adjustment and dehydration
tolerance in rice. J. Exp. Bot. 47:1427–36
[11]Price AH, Young EM, Tomos AD. 1997. Quantitative
trait loci associated with stomatal conductance, leaf rolling
and heading date mapped in upland rice (Oryza sativa). New
Phytol. 137:83–91
[12]Yue B, Xiong L, Xue W, Xing Y, Luo L, Xu C. 2005.
Genetic analysis for drought resistance of rice at reproductive
stage in field with different types of soil. Theor. Appl. Genet.
111:1127–36
[13]Yue B, Xue W, Xiong L, Yu X, Luo L, et al. 2006.
Genetic basis of drought resistance at reproductive stage in
rice: separation of drought tolerance from drought avoidance.
Genetic 172:1213–28
[14]Zhang X, Zhou S, Fu Y, Su Z, Wang X, Sun C. 2006.
Identification of a drought tolerant introgression line derived
from Dongxiang common wild rice (O. rufipogon Griff.). Plant
Mol. Biol. 62:247–59
[15]Lontoc-RoyM,Dutilleul P, Prasher SO,HanL,
Brouillet T, Smith DL. 2006. Advances in the acquisition and
analysis of CT scan data to isolate a crop root system from the
soil medium and quantify root system complexity in 3-D space.
Geoderma 137:231–41
[16]Peleg Z, Fahima T, Krugman T, Abbo S, Yakir
DAN, et al. 2009. Genomic dissection of drought resistance in
durum wheat × wild emmer wheat recombinant inbreed line
population. Plant Cell Environ. 32:758–79
[17]Peleg Z, Fahima T, Krugman T, Abbo S, Yakir
DAN, et al. 2009. Genomic dissection of drought resistance in
durum wheat × wild emmer wheat recombinant inbreed line
population. Plant Cell Environ. 32:758–79
[18]Xu Y, This D, Pausch R, Vonhof W, Coburn J, et al.
2009. Leaf-level water use efficiency determined by carbon
isotope discrimination in rice seedlings: genetic variation
associated with population structure and QTL mapping. Theor.
Appl. Genet. 118:1065–81
[19]Huang X-Y, Chao D-Y, Gao J-P, Zhu M-Z, Shi M,
Lin H-X. 2009. A previously unknown zinc finger protein,
DST, regulates drought and salt tolerance in rice via stomatal
aperture control. Genes Dev. 23:1805–17
[20]Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen
TT, et al. 2001. Locating genomic regions associated mwith
components of drought resistance in rice: comparative mapping
within and across species. Theor. Appl. Genet. 103:19–29
[21]Price AH, Steele KA, Moore BJ, Barraclough PP,
Clark LJ. 2000. A combined RFLP and AFLP linkage map of
upland rice (Oryza sativa L.) used to identify QTLs for root_xfffe_penetration ability. Theor. Appl.Genet. 100:49–587.
[22]Price AH, Steele KA, Moore BJ, Jones RGW. 2002.
Upland rice grown in soil-filled chambers and exposed to
contrasting water-deficit regimes: II. Mapping quantitative
trait loci for root morphology and distribution. Field Crops Res.
76:25–43
[23]A. Kumar, S. Dixit, and A. Henry, “Marker-assisted
introgression of major QTLs for grain yield under drought in
rice,” Translational Genomics for Crop Breeding: Abiotic
Stress, Yield and Quality, Volume 2, R. K. Varshney and R.
Tuberosa, Eds., 1st edition, 2013.
[24]Tripathy JN, Zhang J, Robin S, Nguyen TT, Nguyen
HT. 2000. QTLs for cell-membrane stability mapped in rice
(Oryza sativa L.) under drought stress. Theor. Appl. Genet.
100:1197–202
[25]Teulat B, This D, Khairallah M, Borries C, Ragot C,
et al. 1998. Several QTLs involved in osmoticadjustment trait
variation in barley (Hordeum vulgare L.). Theor. Appl. Genet.
96:688–98
[26]Xu Y, This D, Pausch R, Vonhof W, Coburn J, et al.
2009. Leaf-level water use efficiency determined by carbon
isotope discrimination in rice seedlings: genetic variation
associated with population structure and QTL mapping. Theor.
Appl. Genet. 118:1065–81
[27]Yadav R, Courtois B, Huang N, McLaren G.
1997. Mapping genes controlling root morphology and root
distribution in a doubled-haploid population of rice. Theor.
Appl. Genet. 94:619–32131
[28]Ashraf, M. (2010). Inducing drought tolerance in
plants: recent advances. Biotechnol. Adv. 28, 169–183. doi:
10.1016/j.biotechadv.2009.11.005
[29]Badu-Apraku, B., and Yallou, C. G. (2009).
Registration of striga-resistant and drought tolerant tropical
early maize populations TZE-W Pop DT STR C4 and TZE-Y
Pop DT STR C4. J. Plant Regist. 3, 86–90. doi: 10.3198/
jpr2008.06. 0356crg
[30]Valkoun, J. (2001). “Wheat pre-breeding using
wild progenitors,” in Wheat in a Global Environment, eds Z.
Bedö and L. Láng (Dordrecht: Springer), 699–707. doi:
10.1007/978-94-017-3674-9-94
[31]Tuberosa, R., and Salvi, S. (2006). Genomics
approaches to improve drought tolerance in crops. Trends Plant
Sci. 11, 405–412. doi: 10.1016/j.tplants.2006.06.003
[32]Saranga, Y., Menz, M., Jiang, C. X., Wright, R. J.,
Yakir, D., and Paterson, A. H.(2001). Genomic dissection of
genotype environment interactions conferring adaptation of
cotton to arid conditions. Genome Res. 11, 1988–1995. doi:
10.1101/gr.157201
[33]Lafitte, H. R., Yongsheng, G., Yan, S., and Li, Z. K.
(2007). Whole plant responses, key processes, and adaptation
to drought stress: the case of rice. J. Exp. Bot. 58,169–175.
doi: 10.1093/jxb/erl101
[34]Steele, K. A., Price, A. H., Shashidar, H. E., and
Witcombe, J. R. (2006). Markerassisted selection to introgress
rice QTLs controlling root traits into an Indian upland rice
variety. Theor. Appl. Genet. 112, 208–221. doi: 10.1007/
s00122-005-0110-4
[35]Steele, K. A., Virk, D. S., Kumar, R., Prasad, S. C.,
andWitcombe, J. R. (2007). Field evaluation of upland rice
lines selected for QTLs controlling root traits. Field Crops Res.
101, 180–186. doi: 10.1016/j.fcr.2006.11.002
[36]Serraj, R., Krishnamurthy, L., Kashiwagi, J., Kumar,
J., Chandra, S., and Crouch, J. H. (2004). Variation in root
traits of chickpea (Cicer arietinum L.) grown under terminal
drought. Field Crops Res. 88, 115–127. doi: 10.1016/
j.fcr.2003.12.001
[37]Harris, K., Klein, R., and Mullet, J. (2007). Sorghum
stay-green QTL individually reduces post-flowering droughtinduced leaf senescence. J. Exp. Bot. 58, 327–338. doi:
10.1093/jxb/erl225
DOI: http://dx.doi.org/10.12361/2661-3786-04-02-86921
Refbacks
- 当前没有refback。